留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁层高能粒子运动的Fokker Planck方程位置项扩散系数研究

楚伟 秦刚 许嵩 黄建平 泽仁志玛 申旭辉

楚伟, 秦刚, 许嵩, 黄建平, 泽仁志玛, 申旭辉. 磁层高能粒子运动的Fokker Planck方程位置项扩散系数研究[J]. 空间科学学报, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715
引用本文: 楚伟, 秦刚, 许嵩, 黄建平, 泽仁志玛, 申旭辉. 磁层高能粒子运动的Fokker Planck方程位置项扩散系数研究[J]. 空间科学学报, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715
CHU Wei, QIN Gang, XU Song, HUANG Jianping, ZEREN Zhima, SHEN Xuhui. Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle[J]. Journal of Space Science, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715
Citation: CHU Wei, QIN Gang, XU Song, HUANG Jianping, ZEREN Zhima, SHEN Xuhui. Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle[J]. Journal of Space Science, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715

磁层高能粒子运动的Fokker Planck方程位置项扩散系数研究

doi: 10.11728/cjss2021.05.715
基金项目: 

国家重点研发计划项目(2018YFC1503502-05),应急管理部国家自然灾害防治研究院启动项目(ZDJ2019-03)和ISSI-BJ项目(2019IT-33)共同资助

详细信息
    作者简介:

    楚伟,E-mail:chuwei4076@126.com

  • 中图分类号: P353

Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle

  • 摘要: 利用准线性理论计算了磁层高能粒子运动的Fokker Planck方程在可观测相空间的位置项扩散系数,并与绝热不变量径向扩散系数进行对比分析.研究发现:位置项扩散系数随径向距离呈现R6的比例关系快速增大.相同径向距离条件下,由于空间位置项z分量的作用,高纬度地区的位置项扩散系数小于低纬度地区.通过与径向扩散系数对比发现,两者具有相同的量级,但两者的相对大小需要根据具体的扰动形态进行分析.此研究对使用测试粒子模拟磁层高能粒子运动,尤其是根据引导中心理论,利用蒙特卡洛方法求解磁层高能粒子运动的Fokker Planck方程,建立磁层空间高能粒子运动的精细化模型具有重要意义.

     

  • [1] BAKER D N. What is space weather[J]. Adv. Space Res., 1998, 22(1):7-16
    [2] BAKER D N. The occurrence of operational anomalies in spacecraft and their relationship to space weather[J]. IEEE Trans. Plasma Sci., 2000, 28(6):2007-2016
    [3] BAKER D N. Space science:how to cope with space weather[J]. Science, 2002, 297(5586):1486-1487
    [4] CAO Jinbin, LI Lei, WU Ji. Introduction to Space Physics[M]. Beijing:Science Press, 2001(曹晋滨, 李磊, 吴季. 太空物理学导论[M]. 北京:科学出版社, 2001)
    [5] VAINIO R, DESORGHER L, HEYNDERICKX D, et al. Dynamics of the Earth's particle radiation environment[J]. Space Sci. Rev., 2009, 147(3/4):187-231
    [6] UKHORSKIY A Y, SITNOV M I. Dynamics of radiation belt particles[J]. Space Sci. Rev., 2013, 179(1/2/3/4):545-578
    [7] SCHULZ M, LANZEROTTI L J. Particle Diffusion in the Radiation Belts[M]. Heidelberg:Springer, 1974
    [8] SHPRITS Y Y, THORNE R M, HORNE R B, et al. Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm[J]. Geophys. Res. Lett., 2016, 33 (L05104).DOI: 10.1029/2005GL024256
    [9] HORNE R B, THORNE R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms[J]. Geophys. Res. Lett., 1998, 25(15):3011-3014
    [10] SUMMERS D, THORNE R M, XIAO F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere[J]. J. Geophys. Res. Space Phys., 1998, 103(A9):20487-20500
    [11] ALBERT J M. Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma[J]. J. Geophys. Res.:Space Phys., 2003, 108(A6):1249
    [12] HORNE R B, THORNE R M, SHPRITS Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 2005, 437(7056):227-230
    [13] NORTHROP T G, TELLER E. Stability of the adiabatic motion of charged particles in the Earth's field[J]. Phys. Rev., 1960, 117(1):215-225
    [14] NORTHROP T G. The guiding center approximation to charged particle motion[J]. Ann. Phys., 1961, 15(1):79-101
    [15] NORTHROP T G. The Adiabatic Motion of Charged Particles[M]. New York:Interscience Publishers, 1963
    [16] MCILWAIN C E. Coordinates for mapping the distribution of magnetically trapped particles[J]. J. Geophys. Res., 1961, 66(11).DOI: 10.1029/JZ066i011p03681
    [17] MCILWAIN C E. Magnetic coordinates[J]. Space Sci. Rev., 1966, 5(5):585-598
    [18] TU W G, CUNNINGHAM Y, CHEN M, et al. Modeling radiation belt electron dynamics during gemchallenge intervals with the dream3d diffusion model[J]. J. Geophys. Res.:Space Phys., 2013, 118(10):6197-6211
    [19] ROEDERER J G. On the adiabatic motion of energetic particles in a model magnetosphere[J]. J. Geophys. Res. Atmos., 1967, 72:981-992
    [20] ROEDERER J G. Dynamics of Geomagnetically Trapped Radiation[M]. New York:Springer, 1970
    [21] ROEDERER J G, LEJOSNE S. Coordinates for representing radiation belt particle flux[J]. J. Geophys. Res.:Space Phys., 2018, 123(2):1381-1387
    [22] ZHEN Jie, CHU Wei. Numerical computation of proton geomagnetic vertical cutoff rigidities on 7-8 November 2004[J]. Chin. J. Space Sci., 2013, 33(3):250-257(甄杰, 楚伟. 质子地磁垂直截止刚度在2004年11月7-8日两个时刻处的数值模拟[J]. 空间科学学报, 2013, 33(3):250-257)
    [23] CHU W, QIN G. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions[J]. Ann. Geophys., 2016, 34(1):45-53
    [24] 757-5595-4
    [25] SCHLICKEISER Reinhard. Cosmic Ray Astrophysics[M]. Berlin:Springer Science & Business Media, 2013
    [26] MING Zhang. Theory of energetic particle transport in the magnetosphere:a noncanonical approach[J]. J. Geophys. Res. Space Phys., 2006, 111(A4).DOI: 10.1029/2005JA011323
    [27] XIAO F, SU Z, ZHENG H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. J. Geophys. Res. Space Phys., 2009, 114:A03201
    [28] MING Zhang. A markov stochastic process theory of cosmic-ray modulation[J]. Astrophys. J., 1999, 513(1):409
    [29] TAO X, ALBERT J M, CHAN A A. Numerical modeling of multidimensional diffusion in the radiation belts using layer methods[J]. J. Geophys. Res.:Space Phys., 2009, 114:A02215
    [30] TAO X, CHAN A A, ALBERT J M, et al. Stochastic modeling of multidimensional diffusion in the radiation belts[J]. J. Geophys. Res.:Space Phys., 2008, 113(A7):10.1029/2007JA012985
    [31] JOKIPII J R. Cosmic-ray propagation. I. Charged particles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
    [32] JOKIPII J. Cosmic-ray propagation. Ⅱ. diffusion in the interplanetary magnetic field[J]. Astrophys. J., 1967, 149:405
    [33] XU Ronglan, LI Lei. Magnetospheric Particle Dynamics[M]. Beijing:Science Press, 2005(徐荣栏, 李磊. 磁层粒子动力学[M]. 北京:科学出版社, 2005)
    [34] FEI Y, CHAN A A, ELKINGTON S R, et al. Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm[J]. J. Geophys. Res. Space Phys., 2006, 111(A12).DOI: 10.1029/2005JA011211
    [35] LIU W, TU W, LI X, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS[J]. Geophys. Res. Lett., 2016, 43(3):1023-1030
    [36] SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. J. Geophys. Res.:Space Phys., 2005, 110:A08213
    [37] BRAUTIGAM D H, GINET G P, ALBERT J M, et al. CRRES electric field power spectra and radial diffusion coefficients[J]. J. Geophys. Res. Space Phys., 2005, 110(A2):DOI: 10.1029/2004ja010612
    [38] SHALCHI A. Nonlinear Cosmic Ray Diffusion Theories[M]. Berlin:Springer-Verlag, 2009
    [39] SOUTHWOOD D J, HUGHES W J. Theory of hydromagnetic waves in the magnetosphere[J]. Space Sci. Rev., 1983, 35(4):301-366
    [40] KIVELSON M G, SOUTHWOOD D J. Resonant ULF waves:a new interpretation[J]. Geophys. Res. Lett., 1985, 12(1):DOI: 10.1029/GL012i001p00049
    [41] ZONG Qiugang, WANG Yongfu, YUAN Chongjing, et al. Fast acceleration of "Killer" electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere[J]. Chin. Sci. Bull., 2011, 7:464-476(宗秋刚, 王永福, 袁憧憬, 等. 内磁层中行星际激波激发的超低频波对"杀手"电子和能量离子的快速加速[J]. 科学通报, 2011, 2011, 7:464-476)
    [42] QIN G, MATTHAEUS W, BIEBER J. Perpendicular transport of charged particles in composite model turbulence:recovery of diffusion[J]. Astrophys. J. Lett., 2002, 578(2):L117
    [43] QIN G, MATTHAEUS W, BIEBER J. Subdiffusive transport of charged particles perpendicular to the large scale magnetic field[J]. Geophys. Res. Lett., 2002, 29(4):7-1-7-4
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2021-05-20
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回