Optimization of Atmospheric Radiative Transfer Model LBLRTM Based on Measured CO2 Data
-
摘要: 根据TIMED/SABER 2002—2018年的CO2观测数据,分析CO2浓度的变化特征.依据变化特征给出了CO2浓度随时间、高度、纬度变化的月平均拟合公式,利用非线性最小二乘拟合法,对不同高度和不同纬度的CO2浓度数据分别进行拟合,生成相应的拟合参数.然后,将所有拟合参数汇总并生成拟合参数文件,结合拟合公式构建全球CO2浓度经验计算模块,并将该模块应用到大气辐射传输模型LBLRTM中,对该模型进行优化.将优化前与优化后的LBLRTM模型模拟结果分别与TIMED/SABER观测数据进行比较发现,优化前的LBLRTM模型模拟结果与观测值的均方根误差为15.4%,而优化后的LBLRTM模型模拟结果与观测值的均方根误差由15.4%下降至8.91%.结果表明该优化方法可以提高LBLRTM模型在红外波段的辐射模拟精度.Abstract: According to the CO2 observation data of TIMED/SABER from 2002 to 2018, analyze the variation characteristics of CO2 concentration, gives the monthly average fitting formula of CO2 concentration varying with time, height and latitude according to the various characteristics, and uses the nonlinear least square fitting method to fit the CO2 concentration data of different heights and latitudes respectively to generate corresponding fitting parameters, Then, summarize all fitting parameters and generate the fitting parameter file. Combined with the fitting formula, the empirical calculation module of global CO2 concentration is constructed, and the module is applied to the atmospheric radiative transfer model LBLRTM to optimize LBLRTM. Comparing the simulation results of the optimized LBLRTM model with the TIMED/SABER observation data, the root mean square error between the simulation results of the not optimized LBLRTM model and the observation value is 15.4%, while the root mean square error between the simulation results of the optimized LBLRTM model and the observation value is reduced to 8.91%. The results show that this optimization method can further improve the radiation simulation accuracy of the LBLRTM model in the infrared band.
-
Key words:
- Atmospheric radiative transfer /
- Infrared radiation /
- CO2 concentration
-
[1] SHI Guangyu. Atmospheric Radiation[M]. Beijing:Science Press, 2007(石广玉. 大气辐射学[M]. 北京:科学出版社, 2007) [2] RAO Ruizhong. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012(饶瑞中. 现代大气光学[M]. 北京:科学出版社, 2012) [3] WEI Heli, CHEN Xiuhong, RAO Ruizhong. Introduction to the combined atmospheric radiative transfer software CART[J]. J. Atmos. Environ. Opt., 2007, 6:446-450(魏合理, 陈秀红, 饶瑞中. 通用大气辐射传输软件CART介绍[J]. 大气与环境光学学报, 2007, 6:446-450) [4] GUO Jing, YANG Chunping, ZENG Dandan, et al. Wide spectrum and rapid calculation model for atmos pheric radiative transfer in limb remote sensing[J]. J. Remote Sens., 2015, 19(1):93-107(郭晶, 杨春平, 曾丹丹, 等. 临边遥感大气辐射传输的宽光谱快速计算模型[J]. 遥感学报, 2015, 19(1):93-107) [5] CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:a summary of the AER codes[J]. J. Quant. Spectrosc. Ra., 2005, 91(2):233-244 [6] EMMERT J T, STEVENS M H, BERNATH P F, et al. Observations of increasing carbon dioxide concentration in Earth's thermosphere[J]. Nat. Geosci., 2012, 5(12):868-869 [7] YUE Jia, RUSSELL James, JIAN Yongxiao, et al. Increasing carbon dioxide concentration in the upper atmosphere observed by SABER[J]. Geophys. Res. Lett., 2015, 42(17):7194-7199 [8] LIU Dong. The Study of Characteristics of Infrared Radiation of Middle and Upper Atmosphere and Its Application Based on Model[D]. Hefei:University of Science and Technology of China, 2018(刘栋. 中高层大气红外辐射特性数值模拟研究及其应用[D]. 合肥:中国科学技术大学, 2018) -

计量
- 文章访问数: 228
- HTML全文浏览量: 38
- PDF下载量: 17
- 被引次数: 0