留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚极光区极化流发生期间电离层离子下行的统计

魏冬 於益群

魏冬, 於益群. 亚极光区极化流发生期间电离层离子下行的统计[J]. 空间科学学报, 2022, 42(1): 73-81. doi: 10.11728/cjss2022.01.200724066
引用本文: 魏冬, 於益群. 亚极光区极化流发生期间电离层离子下行的统计[J]. 空间科学学报, 2022, 42(1): 73-81. doi: 10.11728/cjss2022.01.200724066
WEI Dong, YU Yiqun. Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams (in Chinese). Chinese Journal of Space Science, 2022, 42(1): 73-81. DOI: 10.11728/cjss2022.01.200724066
Citation: WEI Dong, YU Yiqun. Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams (in Chinese). Chinese Journal of Space Science, 2022, 42(1): 73-81. DOI: 10.11728/cjss2022.01.200724066

亚极光区极化流发生期间电离层离子下行的统计

doi: 10.11728/cjss2022.01.200724066
基金项目: 国家自然科学基金项目资助(41821003,41974192)
详细信息
    作者简介:

    魏冬:E-mail: weidong@buaa.edu.cn

  • 中图分类号: P352

Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams

  • 摘要: 亚极光区极化流是地球磁层–电离层耦合过程中最重要的现象之一,对电离层具有重要的调制作用。多数情况下,亚极光区极化流发生时会伴随局地离子上行流动,目前已对其有充分的研究,但对离子下行的研究却甚少。本文分析了DMSP卫星在2001 - 2015年间16个地磁暴中的观测数据,在483个亚极光区极化流事件中找到102个离子下行事件,并对其开展统计研究,分析离子下行在亚极光区极化流事件中的发生率,在南北半球的分布以及有助于离子下行形成的条件。结果表明:离子下行在亚极光区极化流事件中发生概率较小,离子下行事件的发生与分布具有比较明显的南北半球差异,并且亚极光区极化流的速度与离子下行速度具有高度相关性,表现为线性关系;而离子下行极有可能是因为双极扩散与地球重力共同作用而产生的,并且离子的热运动强弱对离子下行的速度大小也具有重要影响。这些研究结果有助于进一步理解亚极光区极化流对地球电离层动力学的调制作用。

     

  • 图  1  DMSP F17在南半球观测到的一个SAPS发生时离子下行典型事例。图中从上到下分别为离子水平方向速度、离子垂直方向速度、电子能量通量、离子能量通量、电子数密度以及离子温度

    Figure  1.  A typical case of ion downward flow observed by DMSP F17 during a SAPS event in the Southern Hemisphere. From top to bottom are the ion horizontal drift velocity, ion vertical drift velocity, electron energy flux, ion energy flux, electron number density and ion temperature

    图  2  2013年3月17日磁暴时DMSP F16~F18观测到的SAPS事件以及相应的离子上行与下行的统计情况。(a) 该磁暴所有SAPS事件中离子上行与下行的数量,(b) 离子下行事件在南北半球的分布

    Figure  2.  Statistical characteristics of ion upward flow and downward flow with SAPS events from DMSP F16~F18 observations during the 17 March 2013 magnetic storm. (a) Number of ion upward flow and downward flow cases with SAPS events. (b) Distribution of ion downward flow events on the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively

    图  3  2001-2015年间共16个地磁暴DMSP F12~F18观测到的SAPS事件以及离子下行的统计情况。 (a) 不同等级磁暴中发生的SAPS事件以及离子下行的数量,(b) 南北半球发生的SAPS事件数量。(c)~(f)地球磁层平静(Kp≤4)和扰动(Kp>4)时期所有离子下行事件在南北半球的分布

    Figure  3.  Statistical characteristics of ion downward flow with SAPS events from DMSP F12-F18 observations during 16 magnetic storm of 2001-2015. (a) The number of all ion downward flow cases with SAPS events on the different storm level, (b) the number of SAPS events on the Northern and Southern hemispheres. (c)~(f) Distribution of ion downward flow events on the Northern and Southern hemispheres during the quiet (Kp≤4) and disturbed (Kp>4) times, respectively

    图  4  SAPS速度与离子下行速度的相关性

    Figure  4.  Correlation between SAPS velocities and ion downward flow velocities

    图  5  SAPS速度与离子下行速度的比值以及发生局地离子温度峰值的统计情况

    Figure  5.  Statistical characteristics of the ratio between SAPS and ion downward flow velocity and local ion temperature peaks

    表  1  2001-2015年间发生的16个地磁暴

    Table  1.   16 geomagnetic storms during 2001-2015

    DateStorm levelDstmin/nTDateStorm levelDstmin/nT
    2001.03.31-04.02 Severe –437 2005.09.15-09.17 Moderate –70
    2001.09.30-10.02 Strong –143 2010.04.05-04.08 Moderate –90
    2002.04.17-04.19 Strong –151 2010.08.03-08.05 Moderate –81
    2003.11.20-11.22 Severe –490 2012.06.16-06.19 Moderate –69
    2004.04.01-04.07 Strong –149 2013.03.17-03.19 Strong –132
    2004.11.07-11.09 Severe –394 2013.05.31-06.03 Strong –137
    2005.01.21-01.23 Moderate –92 2013.06.27-07.02 Strong –111
    2005.02.05-02.11 Moderate –68 2015.03.17-03.19 Strong –223
    下载: 导出CSV
  • [1] ANDERSON P C, HANSON W B, HEELIS R A, et al. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A4): 6069-6078 doi: 10.1029/92JA01975
    [2] FOSTER J C, BURKE W J. SAPS: A new categorization for subauroral electric fields[J]. Eos, Transactions, American Geophysical Union, 2002, 83(36): 393-394
    [3] ANDERSON P C, CARPENTER D L, TSURUDA K, et al. Multisatellite observations of rapid subauroral ion drifts (SAID)[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A12): 29585-29600 doi: 10.1029/2001JA000128
    [4] HUANG C S, FOSTER J C. Correlation of the Subauroral Polarization Streams (SAPS) with the Dst index during severe magnetic storms[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A11): A11302
    [5] ERICKSON P J, BEROZ F, MISHION M Z. Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A5): A00J21
    [6] HE F, ZHANG X X, WANG W B, et al. Different evolution patterns of Subauroral Polarization Streams (SAPS) during intense storms and quiet time substorms[J]. Geophysical Research Letters, 2017, 44(21): 10796-10804
    [7] FOSTER J C, VO H B. Average characteristics and activity dependence of the subauroral polarization stream[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1475
    [8] ANDERSON P C, HEELIS R A, HANSON W B. The ionospheric signatures of rapid subauroral ion drifts[J]. Journal of Geophysical Research: Space Physics, 1991, 96(A4): 5785-5792 doi: 10.1029/90JA02651
    [9] ERICKSON P J, GONCHARENKO L P, NICOLLS M J, et al. Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(4): 292-301 doi: 10.1016/j.jastp.2009.04.001
    [10] FIGUEIREDO S, KARLSSON T, MARKLUND G T. Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution[J]. Annales Geophysicae, 2004, 22(3): 923-934 doi: 10.5194/angeo-22-923-2004
    [11] KUNDURI B S R, BAKER J B H, RUOHONIEMI J M, et al. An examination of inter-hemispheric conjugacy in a subauroral polarization stream[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A8): A08225
    [12] CALIFF S, LI X, WOLF R A, et al. Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams[J]. Journal of Geophysical Research: Space Physics, 2016, 121(6): 5294-5306 doi: 10.1002/2015JA022252
    [13] ZHENG Y, BRANDT P C, LUI A T Y, et al. On ionospheric trough conductance and subauroral polarization streams: simulation results[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A4): A04209
    [14] YEH H-C, FOSTER J C. Storm time heavy ion outflow at mid-latitude[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A6): 7881-7891 doi: 10.1029/JA095iA06p07881
    [15] SPIRO R W, HEELIS R A, HANSON W B. Rapid subauroral ion drifts observed by atmosphere explorer C[J]. Geophysical Research Letters, 1974, 6(8): 657-660
    [16] YU Y, JORDANOVA V, ZOU S, et al. Modeling subauroral polarization streams during the 17 March 2013 storm[J]. Journal of Geophysical Research: Space Physics, 2015, 120(3): 1738-1750 doi: 10.1002/2014JA020371
    [17] BURKE W J, RUBIN A G, MAYNARD N C, et al. Ionospheric disturbances observed by DMSP at middle to low latitudes during the magnetic storm of June 4–6, 1991[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18391-18405 doi: 10.1029/1999JA000188
    [18] PUHL-QUINN P A, MATSUI H, MISHIN E V, et al. Cluster and DMSP observations of SAID electric fields[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A5): A05219
    [19] SOUTHWOOD D J, WOLF R A. An assessment of the role of precipitation in magnetospheric convection[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A11): 5227-5232 doi: 10.1029/JA083iA11p05227
    [20] KARLSSON T, MARKLUND G T, BLOMBERG L G. Subauroral electric fields observed by the Freja satellite: A statistical study[J]. Journal of Geophysical Research: Space Physics, 1998, 103: 4327-4341 doi: 10.1029/97JA00333
    [21] WANG H, RIDLEY A J, LUHR H, et al. Statistical study of the subauroral polarization stream: Its dependence on the cross–polar cap potential and subauroral conductance[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12311
    [22] HE F, ZANG X X, WANG W B, et al. Large-scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2964-2973 doi: 10.1002/2018JA025234
    [23] GROCOTT A, MILAN S E, BAKER J B H, et al. Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A112021
    [24] KATAOKA R, HOSOKAWA K, NISHITANI N, et al. SuperDARN Hokkaido radar observation of westward flow enhancement in subauroral latitudes[J]. Annales Geophysicae, 2009, 27(4): 1695-1699 doi: 10.5194/angeo-27-1695-2009
    [25] TSYGANENKO N A, SITNOV M I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2015, 110(A3): A03208
    [26] SMIDDY M, SAGALYN R, SHUMAN B, et al. Intense poleward-directed electric fields near the ionospheric projection of the plasmapause[J]. Geophysical Research. Letters, 1977, 4(11): 543-546 doi: 10.1029/GL004i011p00543
    [27] MAYNARD N C. On large poleward-directed electric fields at sub-auroral latitudes[J]. Geophysical Research. Letters, 1978, 5(7): 617-618 doi: 10.1029/GL005i007p00617
    [28] SPIRO R W, HEELIS R A, HANSON W B. Ion convection and the formation of the mid-latitude F region ionization trough[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A9): 4255-4264 doi: 10.1029/JA083iA09p04255
    [29] FOSTER J C, RIDEOUT W, SANDEL B, et al. On the relationship of SAPS to storm enhanced density[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(3): 303-313 doi: 10.1016/j.jastp.2006.07.021
    [30] GOLDSTEIN J, SANDEL B R, THOMSEN M F, et al. Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A3): A03202
    [31] FOSTER J C, ERICKSON P J, COSTER A J, et al. Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere[J]. Geophysical Research. Letters, 2014, 41(3): 762-768 doi: 10.1002/2013GL059124
    [32] THOMAS E G, BAKER J B H, RUOHONIEMI J M, et al. Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density[J]. Journal of Geophysical Research: Space Physics, 2013, 118(3): 1180-1189 doi: 10.1002/jgra.50116
    [33] WANG H, LUHR H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods[J]. Annales Geophysicae, 2013, 31: 1521-1534 doi: 10.5194/angeo-31-1521-2013
    [34] MOFFET R J, HEELIS R A, SELLEK R, et al. The temporal evolution of the ionospheric signatures of subauroral ion drifts[J]. Planetary and Space Science, 1992, 40(5): 663-670 doi: 10.1016/0032-0633(92)90007-B
    [35] HORVATH I, BRIAN C L. Investigating the development of double-peak subauroral ion drift (DSAID)[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4525-4542
    [36] ENDO M, FUJII R, OGAWA Y, et al. Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar[J]. Annales Geophysicae, 2000, 18: 170-181 doi: 10.1007/s00585-000-0170-3
    [37] FOSTER J C. Storm time plasma transport at middle and high latitudes[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A2): 1675-1689 doi: 10.1029/92JA02032
    [38] ZOU S S, MOLDWIN M B, RIDLEY A J, et al. On the generation/decay of the storm-enhanced density plumes: Role of the convection flow and field-aligned ion flow[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8543-8559 doi: 10.1002/2014JA020408
    [39] RICH F J, HAIRSTON M. Large-scale convection patterns observed by DMSP[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A3): 3827-3844 doi: 10.1029/93JA03296
    [40] GREENSPAN M E, ANDERSON P B, PELAGATTI J M. Characteristics of the Thermal Plasma Monitor (SSIES) (Special Sensor for Ions, Electrons, and Scintillation) for the Defense Meteorological Satellite Program (DMSP) Spacecraft S8 through S10[R]. Bedford: Air Force Geophysics Laboratory, Hanscom Air Force Base, 1986
    [41] HARDY D A, SCHMITT L K, GUSSENHOVEN M S, et al. Precipitating electron and ion detectors (SSJ/4) for the block 5 D/flights 6-10 DMSP satellites: Calibration and data presentation[R]. Bedford: Air Force Geophysics Laboratory, Hanscom Air Force Base, 1984
    [42] HE F, ZHANG X X, CHEN B. Solar cycle, seasonal, and diurnal variations of subauroral ion drifts: Statistical results[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 5076-5086 doi: 10.1002/2014JA019807
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 录用日期:  2020-08-11
  • 修回日期:  2021-06-09
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回