留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高轨微弱信号的跟踪算法分析及仿真

杨小江 王鹃

杨小江, 王鹃. 高轨微弱信号的跟踪算法分析及仿真[J]. 空间科学学报, 2022, 42(1): 153-162. doi: 10.11728/cjss2022.01.201016093
引用本文: 杨小江, 王鹃. 高轨微弱信号的跟踪算法分析及仿真[J]. 空间科学学报, 2022, 42(1): 153-162. doi: 10.11728/cjss2022.01.201016093
YANG Xiaojiang, WANG Juan. Analysis and Simulation of Tracking Algorithm for High Orbit Weak Signal (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 153-162.  DOI: 10.11728/cjss2022.01.201016093
Citation: YANG Xiaojiang, WANG Juan. Analysis and Simulation of Tracking Algorithm for High Orbit Weak Signal (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 153-162.  DOI: 10.11728/cjss2022.01.201016093

高轨微弱信号的跟踪算法分析及仿真

doi: 10.11728/cjss2022.01.201016093
详细信息
    作者简介:

    杨小江:E-mail: yangxj721012@sina.com

  • 中图分类号: V448.25+3

Analysis and Simulation of Tracking Algorithm for High Orbit Weak Signal

  • 摘要:

    高轨航天器自主导航技术是中国迫切需要发展的航天新技术之一,广泛应用于通信、导航、气象、预警等领域。高轨导航接收机为高轨航天器自主导航定位提供了便捷有效的手段。在高动态环境下,载波频率和相位、伪码相位均随载体运动发生较大变化。由于载体动态引入的多普勒频率变化对伪码跟踪环的影响可通过载波辅助消除,接收机的动态性能主要取决于载波跟踪模块的性能。高轨高动态信号由于传播路径的增加,导致高轨导航接收机出现接收信号路径损耗大和信号微弱的问题。通过开展高轨弱信号跟踪技术专项研究及多次仿真分析、合理设计环路噪声带宽和调整预检积分时间等措施,能够有效稳定地处理跟踪 –173 dBw导航弱信号。该技术成功应用于嫦娥五号卫星,并为后期高轨卫星导航、绕月飞行等深空探测项目提供技术指导和指标参考。

     

  • 图  1  导航接收机载波跟踪环路

    Figure  1.  Carrier tracking loop of navigation receiver

    图  2  PLL热噪声颤动

    Figure  2.  PLL thermal noise jitter

    图  3  PLL环路带宽与测量误差的关系

    Figure  3.  Relationship between PLL loop bandwidth and measurement error

    图  4  相同载噪比不同预检测时间下的热噪声抖动

    Figure  4.  Thermal noise jitter under the same carrier noise ratio and different pre-detection time

    图  5  相同预检测时间不同载噪比条件下的热噪声抖动

    Figure  5.  Thermal noise jitter under the same pre-detection time and different carrier noise ratio

    图  6  FLL环路带宽与测量误差的关系

    Figure  6.  Relationship between FLL loop bandwidth and measurement error

    图  7  二阶DLL的热噪声抑制性能

    Figure  7.  Thermal noise suppression performance of second-order DLL

    图  8  DLL环路带宽与测量误差关系

    Figure  8.  Relationship between DLL loop bandwidth and measurement error

    图  9  弱信号跟踪环路

    Figure  9.  Weak signal tracking loop

    图  10  C/N0 = 29 dB·Hz–1, $ {{B}}_{\rm{n}} $=15 Hz, tp=20 ms时的PLL跟踪性能

    Figure  10.  PLL tracking performance at C/N0 = 29 dB·Hz–1, Bn = 15 Hz, tp = 20 ms

    图  11  C/N0 = 29 dB·Hz–1, Bn=10 Hz, tp=5 ms时的FLL跟踪性能

    Figure  11.  FLL tracking performance at C/N0= 29 dB·Hz–1, Bn = 10 Hz, tp = 5 ms

    图  12  C/N0 = 29 dB·Hz–1, Bn =2 Hz, tp=20 ms时的DLL跟踪性能

    Figure  12.  DLL tracking performance when C/N0 = 29 dB·Hz–1, Bn = 2 Hz, tp = 20 ms

    图  13  C/N0 = 29 dB·Hz–1, Bn =15 Hz, tp=20 ms时的IP输出

    Figure  13.  IP output at C/N0 = 29 dB·Hz–1, Bn = 15 Hz, tp = 20 ms

    图  14  高轨接收机实时位置精度

    Figure  14.  Position accuracy of the high orbit navigation receiver

    图  15  高轨接收机实时速度精度

    Figure  15.  Speed accuracy of the high orbit navigation receiver

    表  1  弱信号环路跟踪性能仿真分析结果

    Table  1.   Simulation analysis of weak signal loop tracking performance

    环路
    类型
    接收功率/
    dBw
    环路带宽/
    Hz
    预检积分
    时间/ms
    理论值仿真误差
    PLL–16031.3812.05°2.07°
    –1701514.45°5.67°
    –17115204.99°6.91°
    –17215205.62°7.13°
    –17315206.32°8.56°
    –17415207.10°9.78°
    –17515207.99°11.68°
    FLL–16021.219.42 Hz9.84 Hz
    –1701054.17 Hz4.88 Hz
    –1711054.72 Hz5.59 Hz
    –1721055.36 Hz6.42 Hz
    –1731056.10 Hz7.14 Hz
    –1741056.97 Hz7.83 Hz
    –1751057.99 Hz9.12 Hz
    DLL–1601.06201.37 m1.69 m
    –1702205.67 m6.22 m
    –1712206.40 m7.44 m
    –1722207.22 m7.99 m
    –1732208.17 m9.19 m
    –1742209.25 m9.73 m
    –17522011.29 m13.15 m
    下载: 导出CSV
  • [1] 姜慧. 高轨环境下北斗弱信号的捕获技术研究[D]. 石家庄: 河北科技大学, 2017

    JIANG Hui. Acquisition of Beidou Weak Signal in High Orbit Environment[D]. Shijiazhuang: Hebei University of Science & Technology, 2017
    [2] WINTERNITZ L M B, BAMFORD W A, HECKLER G W. A GPS receiver for high-altitude satellite navigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 541-556 doi: 10.1109/JSTSP.2009.2023352
    [3] UNWIN M, DE VOS VAN STEENWIJK R, BLUNT P, et al. Navigating above the GPS constellation – preliminary results from the SGR-GEO on GIOVE-A[C]//Proceedings of the 26 th International Technical Meeting of the Satellite Division of The Institute of Navigation. Nashville: ION, 2013: 3305-3315
    [4] 郭睿, 刘利, 李晓杰, 等. 卫星与测站钟差支持条件下的GEO卫星精密定轨[J]. 空间科学学报, 2012, 32(3): 405-411 doi: 10.11728/cjss2012.03.405

    GUO Rui, LIU Li, LI Xiaojie, et al. Precise orbit determination for GEO satellites based on both satellite clock offsets and station clock offsets[J]. Chinese Journal of Space Science, 2012, 32(3): 405-411 doi: 10.11728/cjss2012.03.405
    [5] 梁敏敏, 秦红磊, 李峰. 利用GPS实现高轨卫星定位的抗远近效应算法[J]. 空间科学学报, 2010, 30(3): 255-262 doi: 10.11728/cjss2010.03.255

    LIANG Minmin, QIN Honglei, LI Feng. Solving the near-far problem for positioning the high earth orbital satellite with GPS[J]. Chinese Journal of Space Science, 2010, 30(3): 255-262 doi: 10.11728/cjss2010.03.255
    [6] 李婧华, 马冠一. 电离层不规则结构对GPS性能的影响[J]. 空间科学学报, 2013, 33(2): 158-169 doi: 10.11728/cjss2013.02.158

    LI Jinghua, MA Guanyi. Effect of ionospheric irregularities on GPS performance[J]. Chinese Journal of Space Science, 2013, 33(2): 158-169 doi: 10.11728/cjss2013.02.158
    [7] 季善标, 朱文耀, 熊永清. 精密GPS卫星钟差的改正和应用[J]. 空间科学学报, 2001, 21(1): 42-48 doi: 10.3969/j.issn.0254-6124.2001.01.006

    JI Shanbiao, ZHU Wenyao, XIONG Yongqing. Calculate and application of the GPS satellite clock offset[J]. Chinese Journal of Space Science, 2001, 21(1): 42-48 doi: 10.3969/j.issn.0254-6124.2001.01.006
    [8] 刘海颖, 王惠南. 基于GPS的中、高轨道航天器定轨研究[J]. 空间科学学报, 2005, 25(4): 293-297 doi: 10.3969/j.issn.0254-6124.2005.04.009

    LIU Haiying, WANG Huinan. Orbit determination of satellite on the Middle-high earth orbit based on GPS[J]. Chinese Journal of Space Science, 2005, 25(4): 293-297 doi: 10.3969/j.issn.0254-6124.2005.04.009
    [9] 李兰, 李长庚, 黄文德, 等. 联合北斗导航与星间链路的大椭圆卫星定轨方法[J]. 空间科学学报, 2018, 38(6): 915-924 doi: 10.11728/cjss2018.06.915

    LI Lan, LI Changgeng, HUANG Wende, et al. Orbit determined method of high elliptical orbit satellite based on BDS navigation and inter-satellite link[J]. Chinese Journal of Space Science, 2018, 38(6): 915-924 doi: 10.11728/cjss2018.06.915
    [10] 吴勇. GPS弱信号的捕获与跟踪的算法研究[D]. 重庆: 重庆大学, 2012

    WU Yong. Research on Acquisition and Tracking Algorithms for GPS Weak Signal[D]. Chongqing: Chongqing University, 2012
    [11] 卫洁. 多径干扰下GPS弱信号的捕获与跟踪研究[D]. 南京: 南京航空航天大学, 2014

    WE Jie. Research on Acquisition and Tracking of GPS Weak Signals under Multipath Interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014
    [12] QIU L, LI L. GPS signal acquisition based on FFT[C]//2010 Second International Conference on Information Technology and Computer Science. Kiev, Ukraine: IEEE, 2010: 110-113. DOI: 10.1109/ITCS.2010.33
    [13] 刘云飞, 陈志军, 郭肃丽. FFT伪码捕获方法的实现及其性能分析[C]//第五届全球智能控制与自动化大会. 杭州: 浙江大学, 2004

    LIU Yunfei, CHEN Zhijun, GUO Suli. Implement and performance analysis of PN code acquisition based on FFT[C]//Proceedings of the 5 th World Congress on Intelligent Control and Automation. Hangzhou: Zhejiang University, 2004
    [14] 董智红, 吴嗣亮. 大多普勒偏移下直接序列扩频信号捕获新方法[J]. 系统工程与电子技术, 2008, 30(8): 1424-1426 doi: 10.3321/j.issn:1001-506X.2008.08.009

    DONG Zhihong, WU Siliang. New acquisition method for DSSS with large Doppler[J]. Systems Engineering and Electronics, 2008, 30(8): 1424-1426 doi: 10.3321/j.issn:1001-506X.2008.08.009
    [15] 胡辉, 孙函子, 纪兆云. 高动态GPS载波跟踪算法和环路控制策略研究[J]. 宇航学报, 2011, 32(8): 1805-1812 doi: 10.3873/j.issn.1000-1328.2011.08.023

    HU Hui, SUN Hanzi, JI Zhaoyun. Study on algorithm and control strategies of GPS carrier tracking loop under high dynamic conditiong[J]. Journal of Astronautics, 2011, 32(8): 1805-1812 doi: 10.3873/j.issn.1000-1328.2011.08.023
    [16] 周广宇. 微弱GPS信号的捕获与跟踪处理的研究与实现[D]. 上海: 上海交通大学, 2009

    ZHOU Guangyu. Research and Realization of Acquisition and Tracking for Weak GPS Signals[D]. Shanghai: Shanghai Jiao Tong University, 2009
    [17] 刘文学, 袁洪, 魏东岩, 等. 一种用于电离层TEC监测的GNSS信号载波跟踪算法[J]. 空间科学学报, 2014, 34(1): 63-72 doi: 10.11728/cjss2014.01.063

    LIU Wenxue, YUAN Hong, WEI Dongyan, et al. A new GNSS signal carrier tracking algorithm for ionospheric TEC monitoring[J]. Chinese Journal of Space Science, 2014, 34(1): 63-72 doi: 10.11728/cjss2014.01.063
    [18] 唐李梅. GNSS跟踪技术研究[D]. 西安: 西安电子科技大学, 2017

    TANG Limei. Research on the Tracking Technology in GNSS[D]. Xi'an: Xidian University, 2017
    [19] 宋成, 王飞雪, 庄钊文. 辅助型GPS接收机中伪码相位延时及其不确定度估计算法研究[J]. 空间科学学报, 2009, 29(6): 620-626 doi: 10.11728/cjss2009.06.620

    SONG Cheng, WANG Feixue, ZHUANG Zhaowen. Estimate algorithm for pseudo-code phase delay and its uncertainty in the assisted GPS receiver[J]. Chinese Journal of Space Science, 2009, 29(6): 620-626 doi: 10.11728/cjss2009.06.620
    [20] 王未未. 北斗导航信号跟踪算法研究及软件实现[D]. 西安: 西安电子科技大学, 2017

    WANG Weiwei. Research on Beidou Navigation Signal Tracking Algorithms and Software Implemention[D]. Xi'an: Xidian University, 2017
    [21] 洪源, 姚铮, 陆明泉. 卫星导航信号码跟踪精度理论的适用性研究[J]. 计算机仿真, 2012, 29(12): 53-56,375 doi: 10.3969/j.issn.1006-9348.2012.12.014

    HONG Yuan, YAO Zheng, LU Mingquan. Research on adaptability of satellite navigation signal code tracking theory[J]. Computer Simulation, 2012, 29(12): 53-56,375 doi: 10.3969/j.issn.1006-9348.2012.12.014
    [22] 于依萍. 高轨航天器GNSS信号跟踪技术研究与实现[D]. 大连: 大连理工大学, 2018

    YU Yiping. Research and Implementation of GNSS Signal Tracking Technology for High-Orbit Spacecraft[D]. Dalian: Dalian University of Technology, 2018
    [23] 李永虎. 新体制导航信号捕获跟踪技术的研究与实现[D]. 长沙: 国防科学技术大学, 2013

    LI Yonghu. Research and Implement of the Acquisition and Tracking for the New-styled Navigation Signals[D]. Changsha: National University of Defense Technology, 2013
    [24] 闻长远, 岳富占, 仇跃华, 等. 高轨环境下BDS弱信号跟踪技术研究[J]. 飞行器测控学报, 2013, 32(4): 363-370

    WEN Changyuan, YUE Fuzhan, QIU Yuehua, et al. Research on tracking of high earth orbit BDS weak signal[J]. Journal of Spacecraft TT & C Technology, 2013, 32(4): 363-370
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  45
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 录用日期:  2021-05-28
  • 修回日期:  2021-07-11
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回