留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚暴起始位置和膨胀相持续时间对行星际磁场Bz分量的响应

任干明 曹晋滨 马玉端

任干明, 曹晋滨, 马玉端. 亚暴起始位置和膨胀相持续时间对行星际磁场Bz分量的响应[J]. 空间科学学报, 2022, 42(1): 44-50. doi: 10.11728/cjss2022.01.201112099
引用本文: 任干明, 曹晋滨, 马玉端. 亚暴起始位置和膨胀相持续时间对行星际磁场Bz分量的响应[J]. 空间科学学报, 2022, 42(1): 44-50. doi: 10.11728/cjss2022.01.201112099
REN Ganming, CAO Jinbin, MA Yuduan. Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 44-50.  DOI: 10.11728/cjss2022.01.201112099
Citation: REN Ganming, CAO Jinbin, MA Yuduan. Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 44-50.  DOI: 10.11728/cjss2022.01.201112099

亚暴起始位置和膨胀相持续时间对行星际磁场Bz分量的响应

doi: 10.11728/cjss2022.01.201112099
基金项目: 国家自然科学基金项目资助(41821003)
详细信息
    作者简介:

    曹晋滨:E-mail: jbcao@buaa.edu.cn

  • 中图分类号: P353

Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz

  • 摘要:

    磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。

     

  • 图  1  南向IMF($ {B}_{z}$ <0)/北向IMF($ {B}_{z} $>0)的不同持续时间下发生的亚暴事件数

    Figure  1.  Substorm events under different southward/northward IMF duration

    图  2  在不同南向/北向IMF持续时间下北半球和南半球亚暴起始磁纬度的分布

    Figure  2.  Means of magnetic latitude in northern/southern hemisphere under different southward/northward IMF duration

    图  3  在不同南向/北向IMF的持续时间下北半球和南半球亚暴起始磁地方时的分布

    Figure  3.  Means of magnetic local time in northern/southern hemisphere under different southward/northward IMF duration

    图  4  不同南向IMF($ {B}_{z} $ <0)/北向IMF($ {B}_{z} $>0)持续时间下亚暴AE指数最大值的平均值

    Figure  4.  Means of maximum substorm AE index under different southward/northward IMF duration

    图  5  在不同南向/北向IMF持续时间下北半球和南半球亚暴膨胀相持续时间的分布

    Figure  5.  Means of expansion phase duration in northern/southern hemisphere under different southward/northward IMF duration

    表  1  不同延迟时间情况下北半球和南半球亚暴起始磁纬度与南向/北向IMF持续时间的相关系数

    Table  1.   Correlation coefficient of substorm onset magnetic latitude in southern/northern hemisphere and southward/northward IMF duration under different shifted time

    Shifted time/minNorthward IMF Southward IMF
    Northern hemisphereSouthern hemisphereNorthern hemisphereSouthern hemisphere
    25 –0.53 0.14 –0.77 0.37
    30 –0.45 0.07 –0.62 0.42
    35 –0.64 –0.11 –0.81 –0.05
    40 –0.58 –0.14 –0.68 0.24
    45 –0.04 0.28 –0.81 0.03
    50 –0.08 0.34 –0.62 0.21
    55 0.13 0.34 –0.71 0.01
    Average –0.37 0.19 –0.72 0.18
    下载: 导出CSV
  • [1] AXFORD I W. Magnetospheric convection[J]. Reviews of Geophysics, 1969, 7 (1/2). DOI: 10.1029/rg007i001p00421
    [2] LI H, WANG C, PENG Z, et al. Solar wind impacts on growth phase duration and substorm intensity: a statistical approach[J]. Journal of Geophysical Research Space Physics, 2013, 118 doi: 10.1002/jgra.50399
    [3] VORONKOV O I. Observations of the phases of the substorm[J]. Journal of Geophysical Research, 2003, 108(A2). DOI: 10.1029/2002 JA009314
    [4] PARTAMIES N, JUUSOLA L, TANSKANEN E, et al. Statistical properties of substorms during different storm and solar cycle phases[J]. Annales Geophysicae, 2013, 31(2): 349-358 doi: 10.5194/angeo-31-349-2013
    [5] MCPHERRON R L. Growth phase of magnetospheric substorms[J]. Journal of Geophysical Research, 1970, 75(28). DOI: 10.1029/JA075 i028 p05592
    [6] MCPHERRON R L, RUSSELL C T, AUBRY M P. Satellite studies of magnetospheric substorms on August 15, 1968: 1. State of the magnetosphere[J]. Journal of Geophysical Research, 1973, 78(16): 3044-3053 doi: 10.1029/ja078i016p03131
    [7] LIOU K, NEWELL P T, SIBECK D G, et al. Observation of IMF and seasonal effects in the location of auroral substorm onset[J]. Journal of Geophysical Research Space Physics, 2001, 106(A4): 5799 doi: 10.1029/2000JA003001
    [8] FREY H U, MENDE S B, ANGELOPOULOS V. Substorm onset observations by IMAGE-FUV[J]. Journal of Geophysical Research Space Physics, 2004. DOI: 10.1029/2004JA010607
    [9] NISHIMURA Y, LYONS L, ZOU S, et al. Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations[J]. Journal of Geophysical Research Space Physics, 2010. DOI: 10.1029/2009 ja015166
    [10] NEWELL P T, GJERLOEV J W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power[J]. Journal of Geophysical Research Space Physics, 2011, 116(A12). DOI: 10.1029/2011JA016779
    [11] CRAVEN J D, FRANK L A. Diagnosis of auroral dynamics using global auroral imaging with emphasis on large-scale evolutions [R]. Iowa: Department of Physics and Astronomy, Iowa University, 1989
    [12] ØSTGAARD N. Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres[J]. Journal of Geophysical Research, 2004, 109(A7). DOI: 10.1029/2003 JA010370
    [13] WANG H, LUEHR H, MA S Y, et al. Interhemispheric comparison of average substorm onset locations: evidence for deviation from conjugacy[J]. Annales Geophysicae, 2007, 25(4). DOI: 10.5194/angeo-25-989-2007
    [14] ØSTGAARD N, TSYGANENKO N A, MENDE S B, et al. Observations and model predictions of substorm auroral asymmetries in the conjugate hemispheres[J]. Geophysical Research Letters, 2005, 32(5): 347-354 doi: 10.1029/2004gl022166
    [15] ØSTGAARD N, MENDE S B, FREY H U, et al. Auroral conjugacy studies based on global imaging[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(3): 249-255 doi: 10.1016/j.jastp.2006.05.026
    [16] Liou K, Newell P T. On the azimuthal location of auroral breakup: Hemispheric asymmetry[J]. Geophysical Research Letters, 2010, 37(23): 817-824 doi: 10.1029/2010GL045537
    [17] ØSTGAARD N, LAUNDAL K M, JUUSOLA L, et al. Interhemispherical asymmetry of substorm onset locations and the interplanetary magnetic field[J]. Geophysical Research Letters, 2011, 38 (8). DOI: 10.1029/2011 GL046767
    [18] FREY H U, MENDE S B. Substorm onsets as observed by IMAGE-FUV[C]//The 8 th International Conference on Substorms. Calgary: University of Calgary, 2006: 71-76
    [19] MENG C I, TSURUTANI B, KAWASAKI K, et al. Cross-correlation analysis of the AE index and the interplanetary magnetic field B z component[J]. Journal of Geophysical Research Atmospheres, 1973, 78(4): 617-629 doi: 10.1029/JA078i004p00617
    [20] Arnoldy R L. Signature in the interplanetary medium for substorms[J]. Journal of Geophysical Research, 1971, 76(22): 5189-5201 doi: 10.1029/JA076i022p05189
    [21] ROSTOKER G, LAM H L, HUME W D. Response Time of the Magnetosphere to the Interplanetary Electric Field[J]. Canadian Journal of Physics, 1972, 50(6): 544-547 doi: 10.1139/p72-073
    [22] NISHIDA A. Interplanetary origin of electric fields in the magnetosphere[J]. Cosmic Electrodynamics, 1971, 2: 350-74
    [23] AKASOFU S I, PERREAULT P D, YASUHARA F, et al. Auroral substorms and the interplanetary magnetic field[J]. Journal of Geophysical Research, 1973, 78(31): 7490-7508 doi: 10.1029/JA078i031p07490
    [24] PETRUKOVICH A A, BAUMJOHANN W, NAKAMURA R, et al. Small substorms: Solar wind input and magnetotail dynamics[J]. Journal of Geophysical Research Space Physics, 2000, 105(A9): 21109-21117 doi: 10.1029/2000ja900057
    [25] LUI A T Y, AKASOFU S I, HONES E W, et al. Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period[J]. Journal of Geophysical Research, 1976, 81(7): 1415-1419 doi: 10.1029/JA081i007p01415
    [26] KAMIDE Y, PERREAULT P D, AKASOFU S I, et al. Dependence of substorm occurrence probability on the interplanetary magnetic field and on the size of the auroral oval[J]. Journal of Geophysical Research, 1977, 82(35): 5521-5528 doi: 10.1029/JA082i035p05521
    [27] BAKER D N, PULKKINEN T I, ANGELOPOULOS V, et al. Neutral line model of substorms: Past results and present view[J]. Journal of Geophysical Research Space Physics, 1996, 101(A6): 12975-13010 doi: 10.1029/95JA03753
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  91
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 录用日期:  2020-12-01
  • 修回日期:  2021-07-31
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回