留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日冕三维太阳风模拟

刘畅 沈芳 刘佑生

刘畅, 沈芳, 刘佑生. 日冕三维太阳风模拟[J]. 空间科学学报, 2022, 42(1): 25-33. doi: 10.11728/cjss2022.01.201127102
引用本文: 刘畅, 沈芳, 刘佑生. 日冕三维太阳风模拟[J]. 空间科学学报, 2022, 42(1): 25-33. doi: 10.11728/cjss2022.01.201127102
LIU Chang, SHEN Fang, LIU Yousheng. Three-dimensional Numerical Simulation of Coronal Solar Wind (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 25-33.  DOI: 10.11728/cjss2022.01.201127102
Citation: LIU Chang, SHEN Fang, LIU Yousheng. Three-dimensional Numerical Simulation of Coronal Solar Wind (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 25-33.  DOI: 10.11728/cjss2022.01.201127102

日冕三维太阳风模拟

doi: 10.11728/cjss2022.01.201127102
基金项目: 国家自然科学基金项目(41774184,41974202)和国家重点实验室专项研究基金项目共同资助
详细信息
    作者简介:

    刘畅:E-mail: cliu@spaceweather.ac.cn

    通讯作者:

    沈芳,E-mail: fshen@spaceweather.ac.cn

  • 中图分类号: P353

Three-dimensional Numerical Simulation of Coronal Solar Wind

  • 摘要:

    COIN-TVD MHD模型是近年发展起来的能有效实现日冕–行星际三维太阳风模拟的模型。本文利用此模型针对日冕区三维太阳风进行研究,为了模拟日冕太阳风的加热加速,对模型中的体积加热项做了调整。在磁流体模拟中,减小磁场散度的误差是关键问题之一,在调整体积加热项后应用扩散法、八波法、扩散八波法,对2199卡林顿周的背景太阳风进行模拟。模拟结果符合日冕太阳风结构,而且扩散八波法处理磁场散度性能有提升,可将相对磁场散度误差可控制在10–9量级上。

     

  • 图  1  CR2199 GONG的全球磁场

    Figure  1.  CR2199 global magnetic field overview from GONG

    图  3  模拟得到的模型A和模型B从1 Rs到22.5 Rs的位于子午面上的磁场及温度。流线表示磁力线,等值线表示温度

    Figure  3.  Results of the magnetic field lines and temperature obtained by Model A and Model B from 1 Rs to 22.5 Rs. The streamline represents the magnetic line of force and the equivalent line represents the temperature

    图  2  模拟得到的模型A和模型B从1Rs到22.5 Rs的位于子午面上的磁场及径向速度。流线表示磁力线,等值线表示径向速度

    Figure  2.  Results of the magnetic field lines and radial speed obtained by Model A and Model B from 1 Rs to 22.5 Rs. The streamline represents the magnetic line of force, and the equivalent line represents the radial speed

    图  4  模拟得到的模型A和模型B从1 Rs到22.5 Rs的位于子午面上的磁场及密度。流线表示磁力线,等值线表示密度

    Figure  4.  Results of the magnetic field lines and numerical density obtained by Model A and Model B from 1 Rs to 22.5 Rs. The streamline represents the magnetic line of force and the equivalent line represents the number density

    图  5  使用扩散法模拟得到的从1 Rs到22.5 Rs的磁场相对散度误差位于子午面 $ \phi $=180°-0° (a)和$ \phi $=270°-90° (b) 上的分布

    Figure  5.  Relative Error of magnetic field divergence obtained by diffusive method on the meridional plane of $ \phi $=180°-0°(a) and $ \phi $=270°-90°(b) from 1 Rs to 22.5 Rs

    图  6  使用八波法模拟得到的从1 Rs到22.5 Rs的磁场相对散度误差位于子午面 $ \phi $=180°-0° (a)和$ \phi $=270°-90° (b)上的分布

    Figure  6.  Relative error of magnetic field divergence obtained by Powell method on the meridional plane of $ \phi $=180°-0°(a) and $ \phi $=270°-90°(b) from 1 Rs to 22.5 Rs

    图  7  使用扩散八波法模拟得到的从1 Rs到22.5 Rs的磁场相对散度误差位于子午面$ \phi $=180°-0° (a)和$ \phi $=270°-90° (b)上的分布

    Figure  7.  Relative error of magnetic field divergence obtained by Diffusive and Powell method on the meridional plane of $ \phi $=180°-0°(a) and $ \phi $=270°-90°(b) from 1 Rs to 22.5 Rs

  • [1] 魏奉思. “数字空间”是空间科技战略新高地[J]. 河南科技, 2016(19): 7

    WEI Fengsi. "Digital space" is a new strategic in space science and technology[J]. Henan Science and Technology 2016(19): 7
    [2] HAKAMADA K, AKASOFU S I. Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms[J]. Space Science Reviews, 1982, 31(1): 3-70 doi: 10.1007/BF00349000
    [3] TOTH G, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework: a new tool for the space science community[J]. Journal of Geophysical Research: Space Physics, 2005, 110: A12226 doi: 10.1029/2005JA011126
    [4] SMITH Z K, DETMAN T R, SUN W, et al. Modeling the arrival at earth of the interplanetary shock following the 12 may 1997 solar event using HAFV2 and 3-d MHD HHMS models[J]. Space Weather, 2007, 6: S05006
    [5] LINKER J A, RILEY P, MIKIC Z, et al. CORHEL MHD Modeling in Support of Solar Dynamics Observatory[M]. Miami: American Astronomical Society, 2010
    [6] FENG X S, YANG L P, XIANG C Q, et al. Three-dimensional solar wind modeling from the sun to earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophysical Journal, 2010, 723(1): 300 doi: 10.1088/0004-637X/723/1/300
    [7] 冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002

    FENG Xueshang, WU S T, FAN Quanlin, et al. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation[J]. Chinese Journal of Space Science, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002
    [8] FENG X S, WU S T, WEI F S, et al. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations[J]. Space Science Reviews, 2003, 107(1/2): 43-53
    [9] 冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1

    FENG Xueshang, XIANG Changqing, ZHONG Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Scientia Sinica Terrae, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1
    [10] SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event[J]. Journal of Geophysical Research: Space Physics, 2007, 112: A06109
    [11] SHEN Fang, FENG XueShang, SONG WenBin. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind[J]. Scientia Sinica Technologica, 2009, 52(10): 2895-2902
    [12] SHEN F, FENG X S, WANG Y, et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model[J]. Journal of Geophysical Research: Space Physics, 2011, 116: A09103
    [13] SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model[J]. Journal of Geophysical Research (Space Physics), 2011, 116: A04102
    [14] SHEN F, WU S T, FENG X, et al. Acceleration and deceleration of coronal mass ejections during propagation and interaction[J]. Journal of Geophysical Research: Space Physics, 2012, 117: A11101
    [15] SHEN Fang, SHEN Chenlong, WANG Yuming, et al. Could the collision of CMEs in the heliosphere be super elastic. Validation through three dimensional simulations[J]. Geophysical Research Letters, 2013, 40: 1457-1461 doi: 10.1002/grl.50336
    [16] SHEN Fang, SHEN Chenlong, ZHANG Jie, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth: data-constrained three-dimensional MHD simulations[J]. Journal of Geophysical Research: Space Physics, 2014, 119: 7128-7141 doi: 10.1002/2014JA020365
    [17] POWELLK G. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 154(2): 284-309 doi: 10.1006/jcph.1999.6299
    [18] JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. Journal of Computational Physics, 2000, 160: 649-661 doi: 10.1006/jcph.2000.6479
    [19] YEE H C, SJOEGREEN B. Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of ∇· B numerical error[J]. Journal of Scientific Computing, 2006, 29: 115-164 doi: 10.1007/s10915-005-9004-5
    [20] DEDNER A, KEMM F, Kröner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175: 645-673 doi: 10.1006/jcph.2001.6961
    [21] TÓTH G. The ∇⋅B = 0 Constraint in shock-capturing magnetohydrodynamics codes[J]. Journal of Computational Physics, 2000, 161: 605-652
    [22] EVANS C R, HAWLEY J F. Simulation of magnetohydrodynamic flows: a constrained transport method[J]. Astrophysical Journal, 2007, 332(2): 659-677
    [23] DAI W, WOODWARD P R. A simple finite difference scheme for multidimensional magnetohydrodynamical equation[J]. Journal of Computational Physics, 1998, 142: 331-369 doi: 10.1006/jcph.1998.5944
    [24] HOPKINS P F. A constrained-gradient method to control divergence errors in numerical MHD[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462: 576-587
    [25] SERNA S. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations[J]. Journal of Computational Physics, 2009, 228(11): 4232-4247 doi: 10.1016/j.jcp.2009.03.001
    [26] FENG X S, LIU X J, XIANG C Q, et al. A new MHD model with a rotated-hybrid scheme and solenoidality-preserving approach[J]. The Astrophysical Journal, 2019, 871(2): 226 doi: 10.3847/1538-4357/aafacf
    [27] 刘元昕, 纪珍, 冯学尚, 等. 电阻磁流体力学模拟的CESE方法[J]. 空间科学学报, 2010, 30(003): 211-220

    LIU Yuanxin, JI Zhen, FENG Xueshang, et al. CESE method for resistive magnetohynamics[J]. Chinese Journal of Space Science, 2010, 30(003): 211-220
    [28] ZHANG M, FENG X S. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation[J]. Frontiers in Astronomy and Space Sciences, 2016, 3
    [29] YANG Z C, SHEN F, YANG Y, et al. Three-dimensional MHD simulation of interplanetary solar wind[J]. Chinese Journal of Geophysics, 2018, 20: 2127
    [30] NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3‐D MHD model of the solar corona‐solar wind combining system[J]. Journal of Geophysical Research Space Physics, 2009, 114(A7): 109
    [31] FENG X S, ZHANG S H, XIANG C Q, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophysical Journal, 2011, 734(1): 50 doi: 10.1088/0004-637X/734/1/50
    [32] ZHOU Y F, FENG X S, WU S T, et al. Using a 3‐D spherical plasmoid to interpret the Sun‐to‐Earth propagation of the 4 November 1997 coronal mass ejection event[J]. Journal of Geophysical Research Atmospheres, 2012, 117(A1): 102
    [33] 杨子才, 沈芳, 杨易, 冯学尚. WSA太阳风经验模型及其应用[J]. 空间科学学报, 2018, 38(03): 285-285

    YANG Zicai, SHEN Fang, YANG Yi, et al. Analysis of present research on the WSA solar wind model[J]. Chinese Journal of Space Science, 2018, 38(03): 285-285
    [34] 杨子才. 行星际背景太阳风的三维磁流体力学数值模拟[D]. 北京: 中国科学院研究生院. 2018

    YANG Zicai. Numerical Simulation of Three-Dimensional Magnetorheological Simulation of Solar Wind in Interplanetary Background[D]. Beijing: The University of Chinese Academy of Sciences, 2018
    [35] 杨利平. 背景太阳风的三维数值模拟研究[D]. 北京: 中国科学院研究生院, 2011

    YANG Liping. Background Study on 3D Numerical Simulation of Solar Wind[D]. Beijing: The University of Chinese Academy of Sciences, 2011
  • 加载中
图(7)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  95
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 录用日期:  2021-04-12
  • 修回日期:  2021-09-07
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回