留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小行星表面有机物的红外光谱探测方法

唐红 周传娇 李雄耀 刘建忠 莫冰 于雯 曾小家

唐红, 周传娇, 李雄耀, 刘建忠, 莫冰, 于雯, 曾小家. 小行星表面有机物的红外光谱探测方法[J]. 空间科学学报, 2022, 42(1): 117-126. doi: 10.11728/cjss2022.01.201127103
引用本文: 唐红, 周传娇, 李雄耀, 刘建忠, 莫冰, 于雯, 曾小家. 小行星表面有机物的红外光谱探测方法[J]. 空间科学学报, 2022, 42(1): 117-126. doi: 10.11728/cjss2022.01.201127103
TANG Hong, ZHOU Chuanjiao, LI Xiongyao, LIU Jianzhong, MO Bing, YU Wen, ZENG Xiaojia. Infrared Spectroscopic Detection of Organic Matter on the Surface of Asteroids (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 117-126.  DOI: 10.11728/cjss2022.01.201127103
Citation: TANG Hong, ZHOU Chuanjiao, LI Xiongyao, LIU Jianzhong, MO Bing, YU Wen, ZENG Xiaojia. Infrared Spectroscopic Detection of Organic Matter on the Surface of Asteroids (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 117-126.  DOI: 10.11728/cjss2022.01.201127103

小行星表面有机物的红外光谱探测方法

doi: 10.11728/cjss2022.01.201127103
基金项目: 国家自然科学基金项目(41773066),中国科学院青年创新促进会项目(2018435)和贵州省科技计划项目([2020]1Z035)共同资助
详细信息
    作者简介:

    唐红:E-mail: tanghong@vip.gyig.ac.cn

  • 中图分类号: P148

Infrared Spectroscopic Detection of Organic Matter on the Surface of Asteroids

  • 摘要:

    小行星的有机物记录了太阳系早期有机物的形成发展历史,为地球早期生命前体出现的研究提供了重要依据,对于研究生命起源和演化具有重要意义。本文综合分析了小行星表面可能存在的有机物成分、种类及其赋存状态,利用红外光谱开展地面模拟实验,探讨有机物的红外光谱特征及其影响因素。结果表明,不同类型有机物的红外光谱特征与其类型、结构、温度和压力等有关。研究确定了小行星表面主要有机物的红外光谱识别标志,初步提出了小行星有机物红外光谱探测仪器的基本指标参数。

     

  • 图  1  小行星65 Cybele和24 Themis的反射光谱

    Figure  1.  Reflection spectra of Asteroids 65 Cybele and 24 Themis

    图  2  小行星65 Cybele在光谱3.2~3.5 μm波段的有机物建模分析(包括脂肪烃、芳香烃和冰索林三种类型的有机物)

    Figure  2.  Modeling analysis of organic matter of Asteroid 65 Cybele in the spectrum of 3.2~3.5 μm (including aliphatic hydrocarbon, aromatic hydrocarbon, and ice tholin)

    图  3  甘氨酸在–60~30℃的红外光谱

    Figure  3.  Infrared spectra of glycine at –60~30°C

    图  4  葡萄糖在– 60~30°C的红外光谱

    Figure  4.  Infrared spectra of glucose at – 60~30°C

    图  5  正二十烷在– 60~30°C的红外光谱

    Figure  5.  Infrared spectra of eicosane at – 60~30°C

    图  6  Murchison陨石的红外光谱

    Figure  6.  Infrared spectra of Murchison

    图  7  芳香烃、烷烃、羧酸和氨基酸的特征红外识别标志

    Figure  7.  Infrared identification marks of aromatic hydrocarbons, alkanes, carboxylic acids, and amino acids

    表  1  Murchison碳质球粒陨石中的主要有机化合物及其含量

    Table  1.   Types and contents of main organic matter in Murchison carbonaceous chondrites

    类型含量 (×10–6)
    高分子 14500
    甲烷 0.14
    脂肪烃 12~35
    芳香烃 15~28
    一元羧酸 332
    二元羧酸 25.7
    α-羟基羧酸 14.6
    氨基酸 60
    醇类 11
    醛类 11
    酮类 16
    糖相关类 60
    氨类 19
    胺类 8
    尿素 25
    碱性氮杂环 (吡啶和喹啉) 0.05~0.5
    吡啶甲酸 >7
    二甲酰亚胺 >50
    嘧啶类(尿嘧啶和胸腺嘧啶) 0.06
    嘌呤类 1.2
    苯并噻吩 0.3
    磺酸 67
    磷酸 1.5
    下载: 导出CSV

    表  2  小行星和陨石中常见的有机物及其含量和主要官能团

    Table  2.   Abundance and main functional groups of the common organics in asteroids and meteorites

    类型含量 (×10–6)主要官能团
    高分子 14500
    芳香烃 15~28 =C-H
    脂肪烃 12~35 C-H、C=C
    一元羧酸 332 C=O、C-O
    氨基酸 60 N-H
    糖相关类 60 C-O、O-H、OC=O
    二甲酰亚胺 >50 C-O、O-H、C=O
    磺酸 67 S=O
    下载: 导出CSV

    表  3  国内外主要红外光谱仪的参数特征

    Table  3.   Parameter of several infrared spectrometers on spacecrafts

    序号光谱仪名称探测器探测对象波段范
    围/μm
    光谱分辨
    率/nm
    1 Near-infrared 1 and 2
    (NIR1/2)[20]
    Lunar Crater Observation and Sensing Satellite 月球 1.35~2.25 35
    2 Moon Mineralogy Mapper (M3)[21] Chandrayaan-1 月球 0.42~3.0 10~40
    3 Hyperspectral Imager (HySI)[22] Chandrayaan-1 月球 0.4~0.92 15
    4 Infrared Spectrometer
    (SIR1/2)[23]
    SMART-1/Chandrayaan-1 月球 0.93~2.4 60
    5 Observatoire pour la Minéralogie,
    l'Eau, les Glaces et l'Activité (OMEGA)[24]
    Mars Express 火星 0.5~1.0 7
    1.0~5.2 13~20
    6 Spectroscopy for the Investigation of the
    Characteristics of the Atmosphere of Mars (SPICAM)[25]
    Mars Express 火星 0.11~0.31 0.8
    0.7~1.7 0.5~1
    7 Compact Reconnaissance Imaging
    Spectrometer for Mars (CRISM)[26]
    Mars Reconnaissance Orbiter 火星 0.37~3.92 6.55
    8 Spectroscopy for the Investigation of the
    Characteristics of the Atmosphere
    of Venus (SPICAV)[27]
    Venus Express 金星 0.11~0.31 0.8
    0.7~1.7 0.5~1
    2.3~4.2 0.18~0.62
    9 Visible and InfraRed Thermal
    Imaging Spectrometer (VIRTIS)[28]
    Venus Express 金星 0.25~1.0 2
    1.0~5.0 10
    10 Visual and Infrared Mapping
    Spectrometer (VIMS)[29]
    Cassini 土星及土星环 0.35~1.05 7
    0.85~5.1 16
    11 Visible and Near-Infrared
    Imaging Spectrometer (VNIS)[30]
    嫦娥三号 月球 0.45~0.95 2~7
    0.9~2.4 3~12
    12 Near-Infrared Spectrometer
    (NIRS3)[31]
    Hayabusa 2 小行星 162173 Ryugu 1.8~3.2 18
    13 OVIRS[32] OSIRIS-REx 小行星 101955 Bennu 0.4~0.9 <7.5
    0.9~1.9 <13
    1.9~4.3 <22
    14 Visible and Near-Infrared
    Imaging Spectrometer (VNIS)[33]
    嫦娥四号 月球 0.45~0.95 2.4~6.5
    0.9~2.4 3.6~9.6
    下载: 导出CSV

    表  4  4种有机物的主要官能团和较强的特征振动频率

    Table  4.   Main functional groups and strong vibration frequencies of the four organic matter

    类型主要官能团特征振动频率/cm–1
    芳香烃 C=C、CH 3100~3000
    1600~1450
    860~680
    烷烃 CH3、CH2 3000~2850
    1465~1375
    羧酸 OH、CO、C=O 3300~2500
    1800~1680
    960~910
    氨基酸 NH、CH、CO-O 3100~2000
    1650~1590
    1550~1480
    下载: 导出CSV

    表  5  小行星有机物红外光谱探测仪器初步设计结果

    Table  5.   Preliminary design of infrared spectrometer for exploring organic matter in asteroids

    指标类型初步设计结果
    光谱范围 2.9~15.4 μm (650~3400 cm–1
    光谱分辨率 优于10 nm (12 cm–1
    谱段数 1250
    光谱仪类型 高光谱
    分光类型 时空联合调制干涉成像
    定标不确定度 优于4%
    下载: 导出CSV
  • [1] MCFADDEN L A, WEISSMAN P R, JOHNSON T V. Encyclopedia of the Solar System[M]. 2 nd ed. Amsterdam: Academic Press, 2007
    [2] 肖龙. 行星地质学[M]. 北京: 地质出版社, 2013

    XIAO Long. Planetarygeology[M]. Beijing: Geological Publishing House, 2013
    [3] 杨晶, 林杨挺, 欧阳自远. 地外有机化合物[J]. 地学前缘, 2014, 21(6): 165-187

    YANG Jing, LIN Yangting, OUYANG Ziyuan. Extraterrestrial organic compounds[J]. Earth Science Frontiers, 2014, 21(6): 165-187
    [4] 付晓辉, 欧阳自远, 邹永廖. 太阳系生命信息探测[J]. 地学前缘, 2014, 21(1): 161-176

    FU Xiaohui, OUYANG Ziyuan, ZOU Yongliao. A review of the search for life in our Solar System[J]. Earth Science Frontiers, 2014, 21(1): 161-176
    [5] CRUIKSHANK D P, BROWN R H. Organic matter on asteroid 130 Elektra[J]. Science, 1987, 238(4824): 183-184 doi: 10.1126/science.238.4824.183
    [6] RIVKIN A S, EMERY J P. Detection of ice and organics on an asteroidal surface[J]. Nature, 2010, 464(7293): 1322-1323 doi: 10.1038/nature09028
    [7] CAMPINS H, HARGROVE K, PINILLA-ALONSO N, et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature, 2010, 464(7293): 1320-1321 doi: 10.1038/nature09029
    [8] LICANDRO J, CAMPINS H, KELLEY M, et al. (65) Cybele: detection of small silicate grains, water-ice, and organics[J]. Astronomy and Astrophysics, 2011, 525: A34
    [9] DE SANCTIS M C, AMMANNITO E, MCSWEEN H Y, et al. Localized aliphatic organic material on the surface of Ceres[J]. Science, 2017, 355(6326): 719-722 doi: 10.1126/science.aaj2305
    [10] RAPONI A, DE SANCTIS M C, CARROZZO F G, et al. Organic material on Ceres: insights from visible and infrared space observations[J]. Life (Basel), 2020, 11(1): 9
    [11] KAPLAN H H, SIMON A A, EMERY J P, et al. Evidence of organics and carbonates on (101955) Bennu[C]//Proceedings of the 51 st Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2020: 1050
    [12] FERRONE S, CLARK B, KAPLAN H, et al. Visible-near-infrared observations of organics and carbonates on (101955) Bennu: Classification method and search for surface context[J]. ICARUS, 2021, 368(1): 114579
    [13] CHAN Q H S, STEPHANT A, FRANCHI I A, et al. Organic matter and water from asteroid Itokawa[J]. Scientific Reports, 2021, 11(1): 5125 doi: 10.1038/s41598-021-84517-x
    [14] ALEXANDER C M O’D, FOGEL M, YABUTA H, et al. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4380-4403 doi: 10.1016/j.gca.2007.06.052
    [15] MARTINS Z. Organic chemistry of carbonaceous meteorites[J]. Elements, 2011, 7(1): 35-40 doi: 10.2113/gselements.7.1.35
    [16] SEPHTON M A. Organic compounds in carbonaceous meteorites[J]. Natural Product Reports, 2002, 19(3): 292-311 doi: 10.1039/b103775g
    [17] LAWLESS J G. Amino acids in the Murchison meteorite[J]. Geochimica et Cosmochimica Acta, 1973, 37(9): 2207-2212 doi: 10.1016/0016-7037(73)90017-3
    [18] PIZZARELLO S, HUANG Y S, FULLER M. The carbon isotopic distribution of Murchison amino acids[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4963-4969 doi: 10.1016/j.gca.2004.05.024
    [19] PIZZARELLO S, WANG Y, CHABAN G M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6206-6217 doi: 10.1016/j.gca.2010.08.013
    [20] COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003): 463-468 doi: 10.1126/science.1186986
    [21] GREEN R O, PIETERS C, MOUROULIS P, et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation[J]. Journal of Geophysical Research:Planets, 2011, 116(E10): E00G19
    [22] KUMAR A S K, CHOWDHURY A R. Hyper-Spectral Imager in visible and near-infrared band for lunar compositional mapping[J]. Journal of Earth System Science, 2005, 114(6): 721-724 doi: 10.1007/BF02715956
    [23] BASILEVSKY A T, KELLER H U, NATHUES A, et al. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)[J]. Planetary and Space Science, 2004, 52(14): 1261-1285 doi: 10.1016/j.pss.2004.09.002
    [24] BIBRING J P, SOUFFLOT A, BERTHÉ M, et al. OME-GA: observatoire pour la minéralogie, l'Eau, les glaces et l'Activité[M]//WILSON A. Mars Express: the Scientific Payload. Noordwijk: ESA Publications Division, 2004: 37-49
    [25] BERTAUX J L, KORABLEV O, PERRIER S, et al. SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results[J]. Journal of Geophysical Research:Planets, 2006, 111(E10): E10S90
    [26] MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact reconnaissance imaging spectrometer for mars (CRISM) on mars reconnaissance orbiter (MRO)[J]. Journal of Geophysical Research:Planets, 2007, 112(E5): E05S03
    [27] BERTAUX J L, NEVEJANS D, KORABLEV O, et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere[J]. Planetary and Space Science, 2007, 55(12): 1673-1700 doi: 10.1016/j.pss.2007.01.016
    [28] ARNOLD G E, KAPPEL D, HAUS R, et al. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales[C]//Proceedings of SPIE 9608, Infrared Remote Sensing and Instrumentation XXIII. San Diego: SPIE, 2015
    [29] BROWN R H, BAINES K H, BELLUCCI G, et al. The Cassini visual and infrared mapping spectrometer (VIMS) investigation[M]//RUSSELL C T. The Cassini-Huygens Mission. Dordrecht: Springer, 2004: 111-168
    [30] HE Z P, WANG B Y, LÜ G, et al. Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang’E-3[J]. Research in Astronomy and Astrophysics, 2014, 14(12): 1567-1577 doi: 10.1088/1674-4527/14/12/006
    [31] IWATA T, KITAZATO K, ABE M, et al. NIRS3: the near infrared spectrometer on hayabusa2[J]. Space Science Reviews, 2017, 208(1/2/3/4): 317-337
    [32] SIMON-MILLER A A, REUTER D C. OSIRIS-REx OVIRS: a scalable visible to near-IR spectrometer for planetary study[C]//Proceedings of the 44th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2013: 1100
    [33] LI C L, XU R, LV G, et al. Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang'e-4[J]. Review of Scientific Instruments, 2019, 90(10): 103106 doi: 10.1063/1.5089737
    [34] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010

    WENG Shifu. Fourier Transform Infrared Spectroscopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2010
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  190
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 录用日期:  2021-08-03
  • 修回日期:  2021-11-13
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回