留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三相线钉扎的大液滴蒸发实验

赵栋栋 朱志强 刘秋生 秦军 陶跃群

赵栋栋, 朱志强, 刘秋生, 秦军, 陶跃群. 三相线钉扎的大液滴蒸发实验[J]. 空间科学学报, 2022, 42(2): 264-269. doi: 10.11728/cjss2022.02.210123035
引用本文: 赵栋栋, 朱志强, 刘秋生, 秦军, 陶跃群. 三相线钉扎的大液滴蒸发实验[J]. 空间科学学报, 2022, 42(2): 264-269. doi: 10.11728/cjss2022.02.210123035
ZHAO Dongdong, ZHU Zhiqiang, LIU Qiusheng, QIN Jun, TAO Yuequn. Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 264-269. DOI: 10.11728/cjss2022.02.210123035
Citation: ZHAO Dongdong, ZHU Zhiqiang, LIU Qiusheng, QIN Jun, TAO Yuequn. Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 264-269. DOI: 10.11728/cjss2022.02.210123035

三相线钉扎的大液滴蒸发实验

doi: 10.11728/cjss2022.02.210123035
基金项目: 国家自然科学基金项目资助(U1738119,11532015)
详细信息
    作者简介:

    赵栋栋:E-mail:zhaodongdong@imech.ac.cn

    通讯作者:

    朱志强,E-mail:zhuzhiqiang@imech.ac.cn

  • 中图分类号: V524

Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line

  • 摘要: 利用实践十号返回式科学实验卫星蒸发对流箱,开展了三相线处于钉扎状态且接触半径大于毛细长度的无水乙醇大滴在加热PTFE表面蒸发的地基科学实验。实验发现,液滴体积随时间线性递减,但钉扎大液滴蒸发过程中没有出现恒定接触角(CCA)阶段。与小液滴蒸发的恒定接触半径(CCR)阶段相同,大液滴的平均蒸发速率也与初始体积无关,表明受重力影响明显的大液滴蒸发主要发生在三相线附近区域。瞬时蒸发速率经历了迅速上升和之后的长时间内保持稳定两个阶段。与数值模拟结果对比分析发现,准静态扩散模型低估了三相线处于钉扎状态的大液滴瞬时蒸发速率,而同时考虑蒸气扩散与空气中自然对流经验模型的准确性取决于实验所用工质。

     

  • 图  1  附壁液滴蒸发实验系统

    Figure  1.  Experimental setup of sessile droplet evaporation

    图  2  液滴蒸发三个阶段

    Figure  2.  Three stages during sessile droplet evaporation

    图  3  体积$ V $、接触半径$ R $、接触角$ \theta $ 随时间的演化过程($ {V}_{0}=95.5\;\text{µ}\mathrm{L} $

    Figure  3.  Droplet volume, contact radius and contact angle evolution when $ {V}_{0}=95.5\;\text{µ}\mathrm{L} $

    图  4  三相线钉扎状态下不同体积(V0)的液滴蒸干时间tf

    Figure  4.  Dependence of $ {t}_{\mathrm{f}} $ on $ {V}_{0} $ when triple line is pinned (the straight line represents a linear fit)

    图  5  瞬时蒸发速率的实验与理论结果对比

    Figure  5.  Comparison of experiment and model prediction of instant evaporation rate evolution

    表  1  无水乙醇物性参数($ {T}_{\mathrm{a}}=20.0 $℃,$ {p}_{\mathrm{a}}=0.101325\;\mathrm{M}\mathrm{P}\mathrm{a} $

    Table  1.   Physical properties of ethanol ($ {T}_{\mathrm{a}}=20.0 $℃, $ {p}_{\mathrm{a}}=0.101325\;\mathrm{M}\mathrm{P}\mathrm{a} $)

    LiquidDensity
    $ \rho $/($ \mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3} $)
    Dynamic viscosity
    $ \mu $/($ \mathrm{P}\mathrm{a}\cdot \mathrm{s} $)
    Diffusion coefficient
    $ D $/($ {\mathrm{m}\mathrm{m}}^{2}\cdot {\mathrm{s}}^{-1} $)
    Capillary length
    $ {L}_{\mathrm{c}} $/$ \mathrm{m}\mathrm{m} $
    Saturated vapor pressure
    $ {p}_{\mathrm{s}\mathrm{a}\mathrm{t}} $/$ \mathrm{P}\mathrm{a} $
    Ethanol7801.3$ \times {10}^{-3} $131.75812
    下载: 导出CSV
  • [1] FANG X H, LI B Q, PETERSEN E, et al. Drying of DNA droplets[J]. Langmuir, 2006, 22(14): 6308-6312 doi: 10.1021/la060479u
    [2] LI W B, LAN D, WANG Y R. Exploration of Direct-Ink-Write 3D printing in space: droplet dynamics and patterns formation in microgravity[J]. Microgravity Science and Technology, 2020, 32(5): 935-940 doi: 10.1007/s12217-020-09820-0
    [3] LI W B, JI W J, SUN H H, et al. Pattern formation in drying sessile and pendant droplet: interactions of gravity settling, interface shrinkage, and capillary flow[J]. Langmuir, 2019, 35(1): 113-119 doi: 10.1021/acs.langmuir.8b02659
    [4] CHEN C T, Zhang Z H. Low-pressure droplet-evaporation deposition forming transparent conductive films of graphene and poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate[J]. Thin Solid Films, 2021, 719: 138493 doi: 10.1016/j.tsf.2020.138493
    [5] CUMMINGS J, LOWENGRUB J, SUMPTER B G, et al. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures[J]. Soft Matter, 2018, 14(10): 1833-1846 doi: 10.1039/C7SM02560B
    [6] SHUKLA P, JAGDHARI T, FUGARO A P, et al. Characterizing hygroscopic materials via droplet evaporation[J]. Langmuir, 2020, 36(8): 1871-1877 doi: 10.1021/acs.langmuir.9b02840
    [7] BOURGES-MONNIER C, SHANAHAN M E R. Influence of evaporation on contact angle[J]. Langmuir, 1995, 11(7): 2820-2829 doi: 10.1021/la00007a076
    [8] LEE C Y, ZHANG B J, PARK J, et al. Water droplet evaporation on Cu-based hydrophobic surfaces with nano- and micro-structures[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2151-2159
    [9] BIRDI K S, VU D T. Wettability and the evaporation rates of fluids from solid surfaces[J]. Journal of Adhesion Science and Technology, 1993, 7(6): 485-493 doi: 10.1163/156856193X00808
    [10] ROWAN S M, MCHALE G, NEWTON M I, et al. Evaporation of microdroplets of three alcohols[J]. The Journal of Physical Chemistry B, 1997, 101(8): 1265-1267 doi: 10.1021/jp962795v
    [11] GELDERBLOM H, MARÍN Á G, NAIR H, et al. How water droplets evaporate on a superhydrophobic substrate[J]. Physical Review E, 2011, 83(2): 026306 doi: 10.1103/PhysRevE.83.026306
    [12] HU H, LARSON R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344 doi: 10.1021/jp0118322
    [13] KELLY-ZION P L, PURSELL C J, VAIDYA S, et al. Evaporation of sessile drops under combined diffusion and natural convection[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 381(1/2/3): 31-36
    [14] CARLE F, SOBAC B, BRUTIN D. Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation[J]. Applied Physics Letters, 2013, 102(6): 061603 doi: 10.1063/1.4792058
    [15] CARLE F, SEMENOV S, MEDALE M, et al. Contribution of convective transport to evaporation of sessile droplets: empirical model[J]. International Journal of Thermal Sciences, 2016, 101: 35-47 doi: 10.1016/j.ijthermalsci.2015.10.012
    [16] CHEN X, ZHU Z Q, LIU Q S, et al. Thermodynamic behaviors of macroscopic liquid droplets evaporation from heated substrates[J]. Microgravity Science and Technology, 2015, 27(5): 353-360 doi: 10.1007/s12217-015-9426-0
    [17] 徐国峰, 朱志强, 刘秋生, 等. 实践十号卫星蒸发对流箱地面科学实验结果分析[J]. 空间科学学报, 2016, 36(4): 508-512 doi: 10.11728/cjss2016.04.508

    XU Guofeng, ZHU Zhiqiang, LIU Qiusheng, et al. Analyses on ground-based results of evaporation-convection box experiment prepared for SJ-10 satellite[J]. Chinese Journal of Space Science, 2016, 36(4): 508-512 doi: 10.11728/cjss2016.04.508
    [18] 周晓波, 于强, 蔡世界. 空间液滴蒸发实验中液滴图像的无损压缩算法[J]. 空间科学学报, 2010, 30(3): 283-288 doi: 10.11728/cjss2010.03.283

    ZHOU Xiaobo, YU Qiang, CAI Shijie. Lossless compression algorithm for droplet images in space droplet evaporation experiment[J]. Chinese Journal of Space Science, 2010, 30(3): 283-288 doi: 10.11728/cjss2010.03.283
    [19] 宁乔, 朱志强, 吕旭涛, 等. 图像法求液滴表面张力和接触角[J]. 空间科学学报, 2008, 28(1): 74-79 doi: 10.11728/cjss2008.01.074

    NING Qiao, ZHU Zhiqiang, LV Xutao, et al. Determine the surface tension and contact angle of drop by image processing method[J]. Chinese Journal of Space Science, 2008, 28(1): 74-79 doi: 10.11728/cjss2008.01.074
    [20] 于强, 宁乔, 朱志强, 等. 蒸发液滴空间实验研究的图像反馈控制系统[J]. 空间科学学报, 2008, 28(1): 64-68 doi: 10.11728/cjss2008.01.064

    YU Qiang, NING Qiao, ZHU Zhiqiang, et al. Image feedback control system in the space drop evaporation experiment[J]. Chinese Journal of Space Science, 2008, 28(1): 64-68 doi: 10.11728/cjss2008.01.064
    [21] SHANAHAN M E R, SEFIANE K, MOFFAT J R. Dependence of volatile droplet lifetime on the hydrophobicity of the substrate[J]. Langmuir, 2011, 27(8): 4572-4577 doi: 10.1021/la200437s
    [22] STAUBER J M, WILSON S K, DUFFY B R, et al. On the lifetimes of evaporating droplets[J]. Journal of Fluid Mechanics, 2014, 744: R2 doi: 10.1017/jfm.2014.94
    [23] SEFIANE K, WILSON S K, DAVID S, et al. On the effect of the atmosphere on the evaporation of sessile droplets of water[J]. Physics of Fluids, 2009, 21(6): 062101 doi: 10.1063/1.3131062
    [24] MAATAR A, CHIKH S, SAADA M A, et al. Transient effects on sessile droplet evaporation of volatile liquids[J]. International Journal of Heat and Mass Transfer, 2015, 86: 212-220 doi: 10.1016/j.ijheatmasstransfer.2015.02.077
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  139
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-05-11
  • 修回日期:  2021-12-30
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回