留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Green函数法的太阳高能粒子行星际扩散过程模拟

朱琳玲 张效信 顾斌

朱琳玲, 张效信, 顾斌. 基于Green函数法的太阳高能粒子行星际扩散过程模拟[J]. 空间科学学报, 2022, 42(2): 191-198. doi: 10.11728/cjss2022.02.210326038
引用本文: 朱琳玲, 张效信, 顾斌. 基于Green函数法的太阳高能粒子行星际扩散过程模拟[J]. 空间科学学报, 2022, 42(2): 191-198. doi: 10.11728/cjss2022.02.210326038
ZHU Linling, ZHANG Xiaoxin, GU Bin. Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 191-198. DOI: 10.11728/cjss2022.02.210326038
Citation: ZHU Linling, ZHANG Xiaoxin, GU Bin. Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 191-198. DOI: 10.11728/cjss2022.02.210326038

基于Green函数法的太阳高能粒子行星际扩散过程模拟

doi: 10.11728/cjss2022.02.210326038
基金项目: 国家自然科学基金项目(41931073, 41774152)和国家重点研发计划项目(2021YFA0718600)共同资助
详细信息
    作者简介:

    朱琳玲:E-mail:zhulinling@cma.cn

    通讯作者:

    张效信,E-mail:xxzhang@cma.gov.cn

  • 中图分类号: P353

Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory

  • 摘要: 统计分析了自1976-2017年期间记录到的217次SEP(Solar Energetic Particle)事件的日冕足点经度位置,其分布特征符合日冕横向分布的东西效应,同时基于两相传输模型及其Green函数解,对发生在不同日冕足点的四次SEP事件进行了模拟研究。模拟与观测结果表现一致,表明该模型能够较好地模拟发生在不同日冕足点的SEP事件。针对模型中多个传输参数开展的敏感性试验发现,SEP事件日冕足点经度位置能够影响观测结果的探测时间和峰值,而太阳风速对发生在不同日冕足点的事件具有不同影响机制;此外,日冕区扩散系数与SEP事件在日冕区的扩散过程相关,主要影响事件的强度峰值;行星际径向扩散系数的改变对于模拟结果的影响主要体现在峰值到达时间上,且由于SEP事件主要是在大尺度的行星际磁场中传播,行星际径向扩散系数对于模拟结果的影响最为显著,而表征粒子源释放时间尺度的逃逸时间对于模拟结果影响相对较小。

     

  • 图  1  SEP日冕扩散和行星际传输

    Figure  1.  Two-phase propagation scheme of SEPs from solar surface to interplanetary area

    图  2  1976-2017年观测到的SEP事件日冕足点经度位置统计

    Figure  2.  Statistical histogram of coronal-foot-point longitude of 217 SEP events from 1976 to 2017

    图  3  2005年6月16日SEP事件观测与模拟结果对比(a)及期间的太阳风速(b)

    Figure  3.  Comparison between the measurement and the simulation of the SEP event observed on 16 June 2005 (a) and the associated solar wind velocity (b)

    图  4  两相模型不同参数的敏感性试验结果

    Figure  4.  Sensitivity test results of different parameters of the two-phase model

    图  5  三次SEP事件观测和模拟结果对比以及事件期间的太阳风速观测结果

    Figure  5.  Comparisons between the measurement and the simulation of three SEP events and their associated solar wind velocities

    表  1  不同参数对于SEP事件影响的敏感性试验参数设置

    Table  1.   Parameter setting of sensitivity test for SEP events

    试验类型SEP事件日冕
    足点/(°) W
    平均太阳风速
    vsw / (km·s–1)
    日冕区扩散系数
    κ0 (×1015) / (cm2·s–1)
    行星际径向扩散系数
    Kr (×1021) / (cm2·s–1)
    逃逸时间τe / s
    参考组875834.01.01000
    试验组一505834.01.01000
    试验组二8711664.01.01000
    试验组三5011664.01.01000
    试验组四875832.01.01000
    试验组五875834.02.01000
    试验组六875834.01.02000
    下载: 导出CSV

    表  2  四次不同日冕足点SEP事件特征参数

    Table  2.   Characteristic parameters of the four SEP events with different coronal-foot-point longitudes

    SEP事件发生
    时间
    日冕足点位置/
    (°)
    相应耀斑
    等级
    平均太阳风速vsw /
    (km·s–1
    事件强度峰值 /
    (cm–2·s–1·sr–1
    峰值上升沿
    时间t / h
    2005-06-16 87 W M4 583 43.2 6.1
    2017-09-04 16 W M5 520 102.2 9.2
    2013-04-11 12 E M6 440 114.3 8.4
    2014-02-25 82 E X4 447 23.9 20.4
    下载: 导出CSV
  • [1] SHEA M A, SMART D F. Solar proton event patterns: the rising portion of five solar cycles[J]. Advances in Space Research, 2002, 29(3): 325-330 doi: 10.1016/S0273-1177(01)00592-0
    [2] REAMES D V. Magnetic topology of impulsive and gradual solar energetic particle events[J]. The Astrophysical Journal, 2002, 571(1): L63-L66 doi: 10.1086/341149
    [3] KALLENRODE M B. Current views on impulsive and gradual solar energetic particle events[J]. Journal of Physics G: Nuclear and Particle Physics, 2003, 29(5): 965-981 doi: 10.1088/0954-3899/29/5/316
    [4] 沈琳, 敦金平, 张效信, 等. 基于PCA方法对太阳活动区主要参量的分析[J]. 空间科学学报, 2014, 34(6): 765-772 doi: 10.11728/cjss2014.06.765

    SHEN Lin, DUN Jinping, ZHANG Xiaoxin, et al. Analysis of the major parameters in solar active regions based on PCA method[J]. Chinese Journal of Space Science, 2014, 34(6): 765-772 doi: 10.11728/cjss2014.06.765
    [5] LE G M, ZHANG X F. Dependence of large SEP events with different energies on the associated flares and CMEs[J]. Research in Astronomy and Astrophysics, 2017, 17(12): 123 doi: 10.1088/1674-4527/17/12/123
    [6] 邱柏翰, 李川. 对一个太阳风暴及其行星际和地磁效应的研究[J]. 天文学报, 2015, 56(1): 44-52

    QIU Baihan, LI Chuan. The study of a solar storm and its interplanetary and geomagnetic effects[J]. Acta Astronomica Sinica, 2015, 56(1): 44-52
    [7] LE G M, TANG Y H, HAN Y B. Solar energetic particle event of 2005 January 20: release times and possible sources[J]. Chinese Journal of Astronomy and Astrophysics, 2006, 6(6): 751-758 doi: 10.1088/1009-9271/6/6/15
    [8] 魏稳稳, 沈芳, 左平兵. 基于磁流体力学模拟的太阳高能粒子物理模式研究进展[J]. 天文学进展, 2015, 33(1): 1-26 doi: 10.3969/j.issn.1000-8349.2015.01.01

    WEI Wenwen, SHEN Fang, ZUO Pingbing. Research progress on the solar energetic particle model based on magnetohydrodynamic simulation[J]. Progress in Astronomy, 2015, 33(1): 1-26 doi: 10.3969/j.issn.1000-8349.2015.01.01
    [9] 王尚洁, 魏稳稳, 刘佑生, 等. 三维MHD背景场下太阳高能粒子平均自由程模拟[J]. 空间科学学报, 2020, 40(6): 980-989 doi: 10.11728/cjss2020.06.980

    WANG Shangjie, WEI Wenwen, LIU Yousheng, et al. Simulation of mean free path of solar energetic particles in three-dimensional MHD background[J]. Chinese Journal of Space Science, 2020, 40(6): 980-989 doi: 10.11728/cjss2020.06.980
    [10] REID G C. A diffusive model for the initial phase of a solar proton event[J]. Journal of Geophysical Research, 1964, 69(13): 2659-2667 doi: 10.1029/JZ069i013p02659
    [11] AXFORD W I. Anisotropic diffusion of solar cosmic rays[J]. Planetary and Space Science, 1965, 13(12): 1301-1309 doi: 10.1016/0032-0633(65)90063-2
    [12] BURLAGA L F. Anisotropic diffusion of solar cosmic rays[J]. Journal of Geophsical Research, 1967, 72(17): 4449-4466 doi: 10.1029/JZ072i017p04449
    [13] PARKER E N. The passage of energetic charged particles through interplanetary space[J]. Planetary and Space Science, 1965, 13(1): 9-49 doi: 10.1016/0032-0633(65)90131-5
    [14] RUFFOLO D. Interplanetary transport of decay protons from solar flare neutrons[J]. The Astrophysical Journal, 1991, 382(2): 688-698
    [15] 何宏青, 陈传淼, 徐大. 一类偏积分微分方程二阶差分空间半离散格式的全局行为[J]. 应用数学学报, 2009, 32(3): 514-524 doi: 10.3321/j.issn:0254-3079.2009.03.013

    HE Hongqing, CHEN Chuanmiao, XU Da. Global behavior of second order spatially semi-discrete difference scheme for a partial integro-differential equation[J]. Acta Mathematicae Applicatae Sinica, 2009, 32(3): 514-524 doi: 10.3321/j.issn:0254-3079.2009.03.013
    [16] QIN G, HE H Q, ZHANG M. An effect of perpendicular diffusion on the anisotropy of solar energetic particles from unconnected sources[J]. The Astrophysical Journal, 2011, 738(1): 28 doi: 10.1088/0004-637X/738/1/28
    [17] WANG Y, QIN G, ZHANG M. Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock[J]. The Astrophysical Journal, 2012, 752(1): 37 doi: 10.1088/0004-637X/752/1/37
    [18] 黄永年, 王志丹. 影响地球环境的太阳质子事件的时间过程[J]. 空间科学学报, 1998, 18(1): 81-85

    HUANG Yongnian, WANG Zhidan. The temporal processes of the solar proton events affectig the earth environment[J]. Chinese Journal of Space Science, 1998, 18(1): 81-85
    [19] 黄永年, 王志丹, 王永利. 高能太阳宇宙线行星际传播的Green函数及传播模型[J]. 中国科学(A辑), 1998, 41(11): 1197-1205 doi: 10.1007/BF02871982

    HUANG Yongnian, WANG Zhidan, WANG Yongli. Propagation model of high-energy solar cosmic rays in interplanetary space and Green function[J]. Science in China Series A: Mathematics, 1998, 41(11): 1197-1205 doi: 10.1007/BF02871982
    [20] 黄永年, 王志丹, 王世金. 一个新的太阳宇宙线的日-地传输模型[J]. 地球物理学报, 2000, 43(5): 581-588 doi: 10.3321/j.issn:0001-5733.2000.05.001

    HUANG Yongnian, WANG Zhidan, WANG Shijin. A new model for solar-terrestrial propagation of solar cosmic rays[J]. Chinese Journal of Geophysics, 2000, 43(5): 581-588 doi: 10.3321/j.issn:0001-5733.2000.05.001
    [21] 王娅冰, 郑宇卿, 顾斌, 等. 1 AU轨道SEP粒子通量的计算及与多卫星观测结果的比较[J]. 空间科学学报, 2016, 36(3): 331-335

    WANG Yabing, ZHENG Yuqing, GU Bin, et al. Calculation of the SEP flux at 1 AU orbit and its comparison with multi-satellites observations[J]. Chinese Journal of Space Science, 2016, 36(3): 331-335
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  107
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 录用日期:  2022-07-22
  • 修回日期:  2021-11-08
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回