留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星载AIS数据的TEC测量方法

罗坳柏 龙燕飞 陈利虎 方涵先 余孙全 倪久顺

罗坳柏, 龙燕飞, 陈利虎, 方涵先, 余孙全, 倪久顺. 基于星载AIS数据的TEC测量方法[J]. 空间科学学报, 2022, 42(3): 366-375. doi: 10.11728/cjss2022.03.210325037
引用本文: 罗坳柏, 龙燕飞, 陈利虎, 方涵先, 余孙全, 倪久顺. 基于星载AIS数据的TEC测量方法[J]. 空间科学学报, 2022, 42(3): 366-375. doi: 10.11728/cjss2022.03.210325037
LUO Aobo, LONG Yanfei, CHEN Lihu, FANG Hanxian, YU Sunquan, Ni Jiushun. TEC Measurement Method Based on Space-based AIS Data (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 366-375. DOI: 10.11728/cjss2022.03.210325037
Citation: LUO Aobo, LONG Yanfei, CHEN Lihu, FANG Hanxian, YU Sunquan, Ni Jiushun. TEC Measurement Method Based on Space-based AIS Data (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 366-375. DOI: 10.11728/cjss2022.03.210325037

基于星载AIS数据的TEC测量方法

doi: 10.11728/cjss2022.03.210325037
详细信息
    作者简介:

    陈利虎:E-mail:chenlihu05@nudt.edu.cn

  • 中图分类号: P352

TEC Measurement Method Based on Space-based AIS Data

  • 摘要: 基于星载船舶自动识别系统(AIS),提出一种计算全球电离层电子总含量(TEC)的方法。通过在卫星上搭载两个相互垂直的线极化天线,测量AIS信号穿过电离层时的法拉第旋转角,再通过法拉第旋转角与TEC的关系估算TEC。基于天拓五号卫星的AIS数据进行了实验验证,并分析了硬件设备误差和观测参数误差对结果造成的影响。实验表明,本方法测量出的TEC值与基于全球定位系统(GPS)测量的TEC值差值平均为0.762 TECU,证明了此方法的可行性。与现有的TEC测量方法相比,该方法只需利用现有的AIS系统,无需部署地面站,可大幅提高数据更新速率。

     

  • 图  1  用于TEC测量的星载AIS系统

    Figure  1.  Schematic diagram of the space-based AIS system for TEC measurement

    图  2  用于TEC测量的相关坐标系

    Figure  2.  Relevant coordinate system used for TEC measurement

    图  3  基于星载AIS数据的TEC测量方法

    Figure  3.  TEC measurement method based on space-based AIS data

    图  4  基于星载AIS数据的TEC测量方法流程

    Figure  4.  TEC measurement method based on space-based AIS data

    图  5  基于电离层薄层模型计算穿刺点

    Figure  5.  Calculating the puncture point based on the ionospheric single layer model

    图  6  根据2020年8月23日天拓五号卫星接收到的AIS数据得到的船舶分布位置

    Figure  6.  Distribution of ships based on the AIS data received on the Tiantuo V satellite on 23 August 2020

    图  7  数据库中2020年8月23日天拓五号卫星两个接收机解码的AIS报文信息

    Figure  7.  AIS message information decoded by the two receivers of Tiantuo V satellite on 23 August 2020 in the database

    图  8  2020年8月23日天拓五号A机解码的AIS报文信息

    Figure  8.  AIS message information decoded by A machine of Tiantuo V on 23 August 2020

    图  9  2020年8月23日天拓五号B机解码的AIS报文信息

    Figure  9.  AIS message information decoded by B machine of Tiantuo V on 23 August 2020

    图  10  双AIS天线的全方向图(左边为AIS天线1方向图,右边为AIS天线2方向图)

    Figure  10.  Omni-directional pattern of dual AIS antennas (The left side of the figure is the pattern of AIS Antenna 1, and the right side is the pattern of AIS Antenna 2 )

    图  11  2020年8月23日05:00 UT的CODE的TEC分布

    Figure  11.  TEC distribution of CODE at 05:00 UT on 23 August 2020

    表  1  本方法与CODE的TEC值对比

    Table  1.   Comparison of TEC value by this method and CODE

    方法时间(UT)磁场强度/T穿刺点位置坐标法拉第旋转角/(°)TEC/TECU
    本方法 05:00:00 $ 1.{\text{5535}} \times {10^{ - 5}} $ (15.73°S, 123.06°W) 73.7559 9.2052
    CODE 05:00:00 (15.73°S, 123.06°W) 9.1083
    本方法 05:00:03 $ 1.{\text{8379}} \times {10^{ - 5}} $ (15.76°S, 123.79°W) 84.5386 8.9128
    CODE 05:00:03 (15.76°S, 123.79°W) 9.2120
    本方法 05:00:08 $ 1.8{\text{408}} \times {10^{ - 5}} $ (15.50°S, 123.81°W) 99.4584 10.4760
    CODE 05:00:08 (15.50°S, 123.81°W) 9.3140
    本方法 04:59:58 $ 1.{\text{8168}} \times {10^{ - 5}} $ (15.97°S, 123.71°W) 83.1421 8.8674
    CODE 04:59:58 (15.97°S, 123.71°W) 9.1265
    本方法 04:59:55 $ 1.{\text{8422}} \times {10^{ - 5}} $ (15.91°S, 123.77°W) 87.9944 9.2616
    CODE 04:59:55 (15.91°S, 123.77°W) 9.1937
    本方法 06:00:04 $ -{\text{ 3}}{\text{.3630}} \times {10^{ - 5}} $ (30.76°S, 31.63°E) 84.4790 4.8706
    CODE 06:00:04 (30.76°S, 31.63°E) 4.8267
    本方法 05:59:59 $- {\text{ 3}}{\text{.2258}} \times {10^{ - 5}} $ (30.54°S, 31.67°E) 84.1913 5.0604
    CODE 05:59:59 (30.54°S, 31.67°E) 4.8901
    本方法 06:00:01 $ -{\text{ 4}}{\text{.4421}} \times {10^{ - 5}} $ (30.58°S, 34.98°E) 109.2740 4.7696
    CODE 06:00:01 (30.58°S, 34.98°E) 5.3581
    本方法 06:00:00 $ -{\text{ 4}}{\text{.5150}} \times {10^{ - 5}} $ (31.85°S, 34.68°E) 99.8255 4.2841
    CODE 06:00:00 (31.85°S, 34.68°E) 5.0065
    本方法 05:54:16 $ {\text{1}}{\text{.5267}} \times {10^{ - 5}} $ (10.82°S, 45.16°E) 87.7469 11.1440
    CODE 05:54:16 (10.82°S, 45.16°E) 11.7851
    本方法 05:53:39 $ {\text{1}}{\text{.6164}} \times {10^{ - 5}} $ (8.84°S, 45.33°E) 90.7516 10.8190
    CODE 05:53:39 (8.84°S, 45.33°E) 12.2485
    本方法 05:52:44 $ {\text{1}}{\text{.2077}} \times {10^{ - 5}} $ (5.39°S, 44.53°E) 90.4933 14.5290
    CODE 05:52:44 (5.39°S, 44.53°E) 12.7368
    本方法 05:52:32 $ {\text{1}}{\text{.6347}} \times {10^{ - 5}} $ (4.36°S, 45.21°E) 98.7884 11.7170
    CODE 05:52:32 (4.36°S, 45.21°E) 12.9979
    本方法 05:51:55 $ {\text{1}}{\text{.7622}} \times {10^{ - 5}} $ (1.99°S, 45.50°E) 115.5008 12.7080
    CODE 05:51:55 (1.99°S, 45.50°E) 13.3356
    本方法 05:32:02 $ {\text{2}}{\text{.5009}} \times {10^{ - 5}} $ (68.90°N, 58.05°E) 92.5313 7.1737
    CODE 05:32:02 (68.90°N, 58.05°E) 7.4917
    本方法 05:32:00 $ {\text{2}}{\text{.4395}} \times {10^{ - 5}} $ (67.54°N, 56.38°E) 108.8953 8.6543
    CODE 05:32:00 (67.54°N, 56.38°E) 7.6025
    本方法 05:31:56 $ {\text{2}}{\text{.5113}} \times {10^{ - 5}} $ (69.35°N, 59.29°E) 87.8939 6.7860
    CODE 05:31:56 (69.35°N, 59.29°E) 7.4290
    本方法 10:02:41 $ {\text{3}}{\text{.2143}} \times {10^{ - 5}} $ (54.66°N, 155.21°E) 110.3466 6.6562
    CODE 10:02:41 (54.66°N, 155.21°E) 7.8275
    本方法 10:02:58 $ {\text{3}}{\text{.6254}} \times {10^{ - 5}} $ (56.34°N, 152.97°E) 109.2740 6.3535
    CODE 10:02:58 (56.34°N, 152.97°E) 7.7258
    本方法 10:03:34 $ {\text{3}}{\text{.3470}} \times {10^{ - 5}} $ (58.46°N, 153.22°E) 103.8324 6.0112
    CODE 10:03:34 (58.46°N, 153.22°E) 7.5037
    下载: 导出CSV
  • [1] LIU Z Z. Ionosphere Tomographic Modeling and Applications Using Global Positioning System (GPS) Measurements[D]. Calgary: University of Calgary, 2004
    [2] BERNHARDT P A, SIEFRING C L. New satellite-based systems for ionospheric tomography and scintillation region imaging[J]. Radio Science, 2006, 41(5): RS5S23
    [3] KRANKOWSKI A, ZAKHARENKOVA I, KRYPIAK-GREGORCZYK A, et al. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data[J]. Journal of Geodesy, 2011, 85(12): 949-964 doi: 10.1007/s00190-011-0481-z
    [4] LEI J H, SYNDERGAARD S, BURNS A G, et al. Comparison of COSMIC ionospheric measurements with ground‐based observations and model predictions: preliminary results[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A7): A07308 doi: 10.1029/2006JA012240
    [5] 訾海峰, 门志荣, 陈筠力, 等. 针对星载SAR法拉第旋转估计的NeQuick-2模型精度分析[J]. 上海航天, 2020, 37(5): 79-85

    ZI Haifeng, MEN Zhirong, CHEN Junli, et al. Accuracy evaluation of NeQuick-2 model for faraday rotation estimation of space-borne SAR[J]. Aerospace Shanghai, 2020, 37(5): 79-85
    [6] 赵智博, 任晓东, 张小红, 等. 联合GNSS/LEO卫星观测数据的区域电离层建模与精度评估[J]. 武汉大学学报(信息科学版), 2021, 46(2): 262-269,295

    ZHAO Zhibo, REN Xiaodong, ZHANG Xiaohong, et al. Regional ionospheric modeling and accuracy assessment using GNSS/LEO satellites observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 262-269,295
    [7] TSAI L C, LIU C H, TSAI W H, et al. Tomographic imaging of the ionosphere using the GPS/MET and NNSS data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(18): 2003-2011 doi: 10.1016/S1364-6826(02)00218-3
    [8] MEYER F, BAMLER R, JAKOWSKI N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 560-564 doi: 10.1109/LGRS.2006.882148
    [9] JEHLE M, FREY O, SMALL D, et al. Measurement of ionospheric TEC in spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2460-2468 doi: 10.1109/TGRS.2010.2040621
    [10] 赵海生, 许正文, 吴健, 等. 三频信标高精度TEC测量新方法[J]. 空间科学学报, 2011, 31(2): 201-207 doi: 10.11728/cjss2011.02.201

    ZHAO Haisheng, XU Zhengwen, WU Jian, et al. New hybrid method for high resolution TEC measurement with the tri-band beacon[J]. Chinese Journal of Space Science, 2011, 31(2): 201-207 doi: 10.11728/cjss2011.02.201
    [11] CUSHLEY A C, NOËL J M. Ionospheric tomography using ADS-B signals[J]. Radio Science, 2014, 49(7): 549-563 doi: 10.1002/2013RS005354
    [12] CUSHLEY A C. Ionospheric Tomography Using Faraday Rotation of Automatic Dependent Surveillance Broadcast (UHF) Signals: Ionospheric Measurement from ADS-B Signals[D]. Kingston: Royal Military College of Canada, 2016
    [13] CUSHLEY A C, NOËL J M. Ionospheric sounding and tomography using automatic identification system (AIS) and other signals of opportunity[J]. Radio Science, 2020, 55(1): e2019RS006872
    [14] VAN DER PRYT R, VINCENT R. A simulation of the reception of automatic dependent surveillance-broadcast signals in low earth orbit[J]. International Journal of Navigation and Observation, 2015, 2015: 567604 doi: 10.1155/2015/567604
    [15] 刘宸, 刘长建, 鲍亚东, 等. 电离层薄层高度对电离层模型化的影响[J]. 空间科学学报, 2018, 38(1): 37-47 doi: 10.11728/cjss2018.01.037

    LIU Chen, LIU Changjian, BAO Yadong, et al. Effects of ionosphere shell height on ionospheric modeling[J]. Chinese Journal of Space Science, 2018, 38(1): 37-47 doi: 10.11728/cjss2018.01.037
    [16] SMITH D A, ARAUJO-PRADERE E A, MINTER C, et al. A comprehensive evaluation of the errors inherent in the use of a two‐dimensional shell for modeling the ionosphere[J]. Radio Science, 2008, 43(6): RS6008
    [17] WARDINSKI I, SATURNINO D, AMIT H, et al. Geomagnetic core field models and secular variation forecasts for the 13 th International Geomagnetic Reference Field (IGRF-13)[J]. Earth, Planets and Space, 2020, 72(1): 155 doi: 10.1186/s40623-020-01254-7
    [18] FENG J D, HAN B M, ZHAO Z Z, et al. A new global total electron content empirical model[J]. Remote Sensing, 2019, 11(6): 706 doi: 10.3390/rs11060706
    [19] JEE G, LEE H B, KIM Y H, et al. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: ionospheric perspective[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10319 doi: 10.1029/2010JA015432
    [20] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003

    LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  48
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-05-21
  • 修回日期:  2022-01-07
  • 网络出版日期:  2022-05-24

目录

    /

    返回文章
    返回