Transfer Entropy Approach to Discovering the Ranking of Solar Wind Drivers to Geomagnetic Storm
-
摘要: 磁暴是重要空间天气灾害性事件,能够影响卫星的安全在轨运行和地面电网系统等。目前,对于太阳风–磁层相互作用的研究多集中在分析相关系数的线性关系,而基于信息论的转移熵可以提供强大的无模型有向统计量,可用来分析传统相关性分析和模型假设检测不到的非线性关系。本文利用转移熵的方法,研究了磁暴期间的太阳风驱动参数。利用第23和24太阳活动周的小时精度数据进行长时间尺度分析,发现太阳风向地磁的信息传递呈双峰分布,表现出与太阳活动水平的一致性。利用2010-2018年93个地磁暴期间的分钟精度数据进行短时间尺度分析,结果表明:行星际电场(E)和行星际磁场南向分量(
$ {B}_{z} $ )对地磁指数Sym-H在时间延迟为60 min时信息传递较强,而太阳风速度$ {v}_{\mathrm{s}\mathrm{w}} $ 、温度$ {T}_{\mathrm{s}\mathrm{w}} $ 、数密度$ {D}_{\mathrm{s}\mathrm{w}} $ 、磁场B和动压$ {P}_{\mathrm{s}\mathrm{w}} $ 对Sym-H指数的信息传递较弱。上述研究结果能够为太阳风–磁层相互作用的建模提供参数选择及确定预测范围的依据。Abstract: Geomagnetic storm is an important disaster event in space weather, which can affect satellite orbit and ground power system. At present, in the solar wind-magnetosphere system, most studies focus on the linear relationships analyzed by the correlation coefficient. However, transfer entropy can provide powerful model-free directed statistics, which can be used to analyze non-linear relationships that cannot be detected by traditional correlation analysis and model hypothesis. The hourly resolution data of solar activity cycle 23 and 24 were used to analyze the large time scale. The information transmission of solar wind and geomagnetic has a bimodal distribution, which is consistent with the solar activity level. Using the minute resolution data of 93 geomagnetic storms from 2010 to 2018 for small time scale analysis, the results show that E,${{\rm{IMF}}B}_{z}$ have strong information transmission to the geomagnetic Sym-H parameter when the time delay is 60 minutes, while$ {v}_{\mathrm{s}\mathrm{w}} $ ,$ {T}_{\mathrm{s}\mathrm{w}} $ ,$ {D}_{\mathrm{s}\mathrm{w}} $ , B,$ {P}_{\mathrm{s}\mathrm{w}} $ are lower. It provides the basis for parameter selection and prediction range determination for solar wind-geomagnetic model construction.-
Key words:
- Solar wind /
- Geomagnetic storm /
- Transfer entropy
-
图 4 行星际磁场(
$ B $ )、太阳风速度($ {v}_{\mathrm{s}\mathrm{w}} $ )、太阳风等离子体数密度($ {D}_{\mathrm{s}\mathrm{w}} $ )、太阳风温度($ {T}_{\mathrm{s}\mathrm{w}} $ )、太阳风动压($ {P}_{\mathrm{s}\mathrm{w}} $ )、行星际电场($ E $ )对地磁Sym-H指数的转移熵Figure 4. Transfer entropy of interplanetary magnetic field (
$ B $ ), solar wind speed ($ {v}_{\mathrm{s}\mathrm{w}} $ ), solar wind plasma number density ($ {D}_{\mathrm{s}\mathrm{w}} $ ), solar wind temperature ($ {T}_{\mathrm{s}\mathrm{w}} $ ) solar wind dynamic pressure ($ {P}_{\mathrm{s}\mathrm{w}} $ ), the interplanetary electric field ($ E $ ) and Sym-H表 1
${{\boldsymbol{T}}}_{\bf{s}\bf{w}\to \bf{S}\bf{y}\bf{m}{\text{-}}{\boldsymbol{H}}}$ 同太阳活动指数的相关性Table 1. Correlation between
${{\boldsymbol{T}}}_{\bf{s}\bf{w}\to \bf{S}\bf{y}\bf{m}{\text{-}}{\boldsymbol{H}}}$ and solar radiation指标 相关系数 转移熵 源序列目标序列 $ {N}_{\mathrm{s}\mathrm{s}} $ F10.7 $ {N}_{\mathrm{s}\mathrm{s}} $ F10.7 $ T(B\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.72 0.70 0.22 0.20 $ T({B}_{z}\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.74 0.70 0.20 0.16 $ T({T}_{\mathrm{s}\mathrm{w}}\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.83 0.82 0.36 0.33 $ T({D}_{\mathrm{s}\mathrm{w}}\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.80 0.79 0.27 0.25 $ T({v}_{\mathrm{s}\mathrm{w}}\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.74 0.72 0.26 0.23 $ T({P}_{\mathrm{s}\mathrm{w}}\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.61 0.58 0.19 0.18 $ T(E\to \mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H) $ 0.64 0.60 0.15 0.12 表 2 2010-2018年磁暴事件
Table 2. Geomagnetic storm events from 2010 to 2018
Start time (UT) Peak time (UT) $ {\mathit{D}\mathit{s}\mathit{t}}_{\mathbf{m}\mathbf{i}\mathbf{n}}/\bf{n}\bf{T} $ Start time (UT) Peak time (UT) $ {\mathit{D}\mathit{s}\mathit{t}}_{\mathbf{m}\mathbf{i}\mathbf{n}}/\bf{n}\bf{T} $ 2010-04-05 12:00 2010-04-06 07:40 –90 2015-07-04 13:00 2015-07-05 04:50 –86 2010-08-03 21:00 2010-08-04 01:10 –81 2015-08-15 09:00 2015-08-16 07:30 –93 2011-02-04 19:30 2011-02-04 21:22 –67 2015-08-23 06:00 2015-08-23 08:30 –59 2011-03-01 18:00 2011-03-01 20:40 –69 2015-08-27 03:00 2015-08-27 20:30 –100 2011-03-11 21:00 2011-03-11 23:36 –82 2015-08-27 21:00 2015-08-29 01:05 –54 2011-04-06 18:00 2011-04-06 19:03 –65 2015-09-09 03:00 2015-09-09 08:00 –110 2011-05-28 06:00 2011-05-28 11:11 –94 2015-09-11 06:00 2015-09-11 14:20 –94 2011-05-29 04:30 2011-05-29 06:53 –66 2015-09-20 06:00 2015-09-20 11:05 –84 2011-06-04 21:00 2011-06-05 05:19 –60 2015-10-07 18:00 2015-10-07 22:25 –124 2011-08-05 20:57 2011-08-06 03:22 –126 2015-11-07 03:00 2015-11-07 06:05 –106 2011-09-09 15:00 2011-09-10 04:26 –77 2015-12-20 03:00 2015-12-20 22:50 –169 2011-09-17 13:30 2011-09-17 18:29 –63 2015-12-31 13:30 2016-01-01 01:05 –117 2011-09-26 16:44 2011-09-26 21:19 –116 2016-02-17 21:00 2016-02-18 00:20 –59 2011-10-24 21:00 2011-10-25 01:15 –160 2016-03-06 18:00 2016-03-06 21:20 –109 2012-01-24 18:00 2012-01-25 10:45 –82 2016-03-11 12:00 2016-03-11 20:15 –30 2012-03-09 03:00 2012-03-09 08:13 –150 2016-04-02 21:00 2016-04-02 22:50 –65 2012-03-12 10:30 2012-03-12 16:55 –67 2016-05-02 03:00 2016-05-02 03:15 –55 2012-03-15 15:52 2012-03-15 19:53 –79 2016-05-08 00:00 2016-05-08 08:15 –103 2012-04-24 00:00 2012-04-24 03:26 –125 2016-06-06 03:00 2016-06-06 08:05 –55 2012-06-16 21:00 2012-06-17 12:53 –69 2016-06-14 18:00 2016-06-15 01:00 –33 2012-07-15 06:00 2012-07-15 10:04 –123 2016-09-01 21:00 2016-09-02 01:50 –72 2012-09-03 12:00 2012-09-04 07:51 –79 2016-09-27 15:00 2016-09-28 03:05 –48 2012-09-05 00:00 2012-09-05 07:43 –83 2016-09-28 18:00 2016-09-29 09:30 –64 2012-10-01 03:00 2012-10-01 03:52 –138 2016-10-13 15:00 2016-10-13 23:45 –114 2012-10-08 07:30 2012-10-09 02:10 –116 2016-10-25 12:00 2016-10-25 22:55 –80 2012-11-14 01:30 2012-11-14 07:27 –118 2016-11-25 03:00 2016-11-25 06:30 –52 2013-03-17 06:00 2013-03-17 20:28 –132 2016-12-21 15:00 2016-12-21 15:40 –52 2013-06-01 01:00 2013-06-01 07:48 –137 2017-03-01 23:00 2017-03-02 02:09 –60 2013-06-07 03:00 2013-06-07 04:39 –86 2017-03-27 09:00 2017-03-27 14:45 –86 2013-06-29 03:00 2013-06-29 06:34 –111 2017-04-20 03:00 2017-04-20 04:25 –47 2013-10-02 03:00 2013-10-02 06:19 –90 2017-04-22 03:00 2017-04-22 23:40 –52 2013-12-08 00:00 2013-12-08 08:30 –72 2017-05-27 21:00 2017-05-28 07:10 –141 2014-02-20 03:00 2014-02-20 05:55 –101 2017-07-16 12:00 2017-07-16 13:15 –66 2014-02-27 18:00 2014-02-27 23:25 –100 2017-08-22 00:00 2017-08-23 12:30 –51 2014-06-08 03:00 2014-06-08 06:50 –71 2017-09-07 21:00 2017-09-08 01:05 –144 2014-08-19 21:00 2014-08-21 07:50 –39 2017-09-08 12:00 2017-09-08 17:05 –111 2014-09-12 15:00 2014-09-12 23:05 –95 2017-09-14 15:00 2017-09-16 04:30 –44 2015-01-07 06:00 2015-01-07 11:00 –134 2017-09-27 18:00 2017-09-28 05:55 –74 2015-03-17 06:00 2015-03-17 22:45 –233 2017-10-13 12:00 2017-10-14 05:35 –67 2015-03-22 06:00 2015-03-22 08:05 –64 2017-11-07 18:00 2017-11-08 04:05 –89 2015-04-10 03:00 2015-04-11 09:25 –88 2018-03-18 21:00 2018-03-18 21:42 –53 2015-04-16 21:00 2015-04-16 23:40 –88 2018-04-20 06:00 2018-04-20 09:35 –86 2015-05-13 03:00 2015-05-13 06:45 –95 2018-05-06 00:00 2018-05-06 02:31 –66 2015-05-19 00:00 2015-05-19 02:55 –64 2018-08-26 00:00 2018-08-26 07:11 –206 2015-06-08 06:00 2015-06-08 07:45 –104 2018-09-11 06:00 2018-09-11 10:07 –64 2015-06-22 18:00 2015-06-23 04:25 –207 2018-11-05 03:00 2018-11-05 06:02 –66 2015-06-25 06:00 2015-06-25 19:45 –90 表 3 太阳风参数对地磁Sym-H指数重要性系数排序
Table 3. Importance ranking of solar wind parameters to geomagnetic index Sym-H
序号 太阳风参数 $ \varGamma $/nats $ {\delta }_{{S}/{N}} $ at $ {\tau }_{\mathrm{m}\mathrm{a}\mathrm{x}} $ $ {\alpha }_{\mathrm{s}\mathrm{i}\mathrm{g}} $ at $ {\tau }_{\mathrm{m}\mathrm{a}\mathrm{x}} $ $ \left|r\right| $ $ {D}_{M} $ 1 行星际电场($ E $) 0.200 3.92 37.43 0.473 0.101 2 行星际磁场南向分量(Bz) 0.196 4.15 36.83 0.462 0.107 3 太阳风速度($ {v}_{\mathrm{s}\mathrm{w}} $) 0.159 3.15 29.92 0.322 0.200 4 太阳风温度($ {T}_{\mathrm{s}\mathrm{w}} $) 0.157 3.08 29.17 0.224 0.285 5 太阳风密度($ {D}_{\mathrm{s}\mathrm{w}} $) 0.148 2.93 28.00 0.244 0.262 6 行星际磁场($ B $) 0.146 3.10 27.45 0.290 0.213 7 太阳风动压($ {P}_{\mathrm{s}\mathrm{w}} $) 0.135 2.68 25.58 0.209 0.277 -
[1] 刘绍亮, 陈剑利. 太阳风和地球磁层相互作用的两种可能类型[J]. 空间科学学报, 1988, 8(1): 35-38LIU Shaoliang, CHEN Jianli. Two possible modes of the interactions between the solar wind and the magnetosphere[J]. Chinese Journal of Space Science, 1988, 8(1): 35-38 [2] CANE H V, RICHARDSON I G, ST CYR O C. Coronal mass ejections, interplanetary ejecta and geomagnetic storms[J]. Geophysical Research Letters, 2000, 27(21): 3591-3594 doi: 10.1029/2000GL000111 [3] WU C C. Effects of magnetic clouds on the occurrence of geomagnetic storms: the first 4 years of Wind[J]. Journal of Geophysical Research, 2002, 107(A10): 1314 doi: 10.1029/2001JA000161 [4] 张继春, 田剑华, 濮祖荫. 行星际电场与Dst指数[J]. 空间科学学报, 2001, 21(4): 297-304 doi: 10.3969/j.issn.0254-6124.2001.04.002ZHANG Jichun, TIAN Jianhua, PU Zuyin. Correlations of Dst index with the interplanetary electric field[J]. Chinese Journal of Space Science, 2001, 21(4): 297-304 doi: 10.3969/j.issn.0254-6124.2001.04.002 [5] 赵明现, 乐贵明, 刘玉洁. 行星际扰动与不同级别磁暴强度关系的研究[J]. 空间科学学报, 2006, 26(6): 421-426 doi: 10.3969/j.issn.0254-6124.2006.06.003ZHAO Mingxian, LE Guiming, LIU Yujie. Study on the relationship between interplanetary disturbances and magnetic storms with different intensities[J]. Chinese Journal of Space Science, 2006, 26(6): 421-426 doi: 10.3969/j.issn.0254-6124.2006.06.003 [6] KHABAROVA O, PILIPENKO V, ENGEBRETSON M J, et al. Solar wind and interplanetary magnetic field features before magnetic storm onset[C]// Proceedings of the Eighth International Conference on Substorms (ICS-8). Alberta: University of Calgary Press, 2006: 127-132 [7] AHMED L, EL-ERAKI M A, SAMY A, et al. Prediction of the Dst index and analysis of it's dependence on solar wind parameters using neural network[J]. Space Weather, 2018, 16(9): 1277-1290 doi: 10.1029/2018SW001863 [8] IYEMORI T, MAEDA H. Prediction of geomagnetic activities from solar wind parameters based on the linear prediction theory[C]//Proceedings of Solar-Terrestrial Predictions Proceedings, Vol. 4: Prediction of Terrestrial Effects of Solar Activity. Boulder: U. S. Dept. of Commerce, 1980 [9] JI E Y, MOON Y J, GOPALSWAMY N, et al. Comparison of Dst forecast models for intense geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A3): A03209 [10] RASTÄTTER L, KUZNETSOVA M M, GLOCER A, et al. Geospace environment modeling 2008-2009 challenge: Dst index[J]. Space Weather, 2013, 11(4): 187-205 doi: 10.1002/swe.20036 [11] STUMPO M, CONSOLINI G, ALBERTI T, et al. Measuring information coupling between the solar wind and the magnetosphere–ionosphere system[J]. Entropy, 2020, 22(3): 276 doi: 10.3390/e22030276 [12] DE MICHELIS P, CONSOLINI G, MATERASSI M, et al. An information theory approach to the storm-substorm relationship[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A8): A08225 [13] WING S, JOHNSON J R, CAMPOREALE E, et al. Information theoretical approach to discovering solar wind drivers of the outer radiation belt[J]. Journal of Geophysical Research: Space Physics, 2016, 121(10): 9378-9399 doi: 10.1002/2016JA022711 [14] TSONIS A A. Probing the linearity and nonlinearity in the transitions of the atmospheric circulation[J]. Nonlinear Processes in Geophysics, 2001, 8(6): 341-345 doi: 10.5194/npg-8-341-2001 [15] SCHREIBER T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461-464 doi: 10.1103/PhysRevLett.85.461 [16] SCHWENN R, DAL LAGO A, HUTTUNEN E, et al. The association of coronal mass ejections with their effects near the Earth[J]. Annales Geophysicae, 2005, 23(3): 1033-1059 doi: 10.5194/angeo-23-1033-2005 [17] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792 doi: 10.1029/93JA02867 [18] KISSINGER J, MCPHERRON R L, HSU T S, et al. Steady magnetospheric convection and stream interfaces: relationship over a solar cycle[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A5): A00I19 doi: 10.1029/2010JA015763 [19] XIE H, GOPALSWAMY N, ST CYR O C, et al. Effects of solar wind dynamic pressure and preconditioning on large geomagnetic storms[J]. Geophysical Research Letters, 2008, 35(6): L06S08 doi: 10.1029/2007GL032298 [20] MCPHERRON R L, BAKER D N, BARGATZE L F, et al. IMF control of geomagnetic activity[J]. Advances in Space Research, 1988, 8(9/10): 71-86 [21] KANE R P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A2): A02213 doi: 10.1029/2004JA010799 [22] WANG Y M, SHEN C L, WANG S, et al. An empirical formula relating the geomagnetic storm's intensity to the interplanetary parameters: $ -1 \sim 284 $ and Δt [J]. Geophysical Research Letters, 2003, 30(20): 2039 doi: 10.1029/2003GL017901[23] 刘立波, 万卫星, 陈一定, 等. 电离层与太阳活动性关系[J]. 科学通报, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9LIU Libo, WAN Weixing, CHEN Yiding, et al. Solar activity effects of the ionosphere: a brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9 [24] 吴迎燕, 徐文耀, 陈耿雄, 等. 磁暴期间几种主要磁扰成分的演化特征[J]. 地球物理学报, 2007, 50(1): 1-9 doi: 10.3321/j.issn:0001-5733.2007.01.001WU Yingyan, XU Wenyao, CHEN Gengxiong, et al. The evolution characteristics of geomagnetic disturbances during geomagnetic storms[J]. Chinese Journal of Geophysics, 2007, 50(1): 1-9 doi: 10.3321/j.issn:0001-5733.2007.01.001 [25] BLANC M, RICHMOND A D. The ionospheric disturbance dynamo[J]. Journal of Geophysical Research: Space Physics, 1980, 85(A4): 1669-1686 doi: 10.1029/JA085iA04p01669 [26] KOZYRA J U, JORDANOVA V K, HOME R B, et al. Modeling of the contribution of Electromagnetic Ion Cyclotron (EMIC) waves to stormtime ring current erosion[M]//TSURUTANI B T, GONZALEZ W D, KAMIDE Y, et al. Magnetic Storms, Volume 98. Washington DC: American Geophysical Union, 1997: 187-202 [27] 史良文, 申成龙, 汪毓明. 2007-2012 年Dstmin≤–50 nT的中等以上地磁暴的行星际源统计[J]. 地球物理学报, 2014, 57(11): 3822-3833 doi: 10.6038/cjg20141136SHI Liangwen, SHEN Chenglong, WANG Yuming. The interplanetary origins of geomagnetic storm with Dstmin≤–50 nT in 2007-2012[J]. Chinese Journal of Geophysics, 2014, 57(11): 3822-3833 doi: 10.6038/cjg20141136 [28] RUNGE J, BALASIS G, DAGLIS I A, et al. Common solar wind drivers behind magnetic storm-magnetospheric substorm dependency[J]. Scientific Reports, 2018, 8(1): 16987 doi: 10.1038/s41598-018-35250-5 -