留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于空间试验的金属物质气化方法

郑延帅 邱扬 薛昆 许正文 赵海生 谢守志

郑延帅, 邱扬, 薛昆, 许正文, 赵海生, 谢守志. 用于空间试验的金属物质气化方法[J]. 空间科学学报, 2022, 42(3): 448-454. doi: 10.11728/cjss2022.03.210601027
引用本文: 郑延帅, 邱扬, 薛昆, 许正文, 赵海生, 谢守志. 用于空间试验的金属物质气化方法[J]. 空间科学学报, 2022, 42(3): 448-454. doi: 10.11728/cjss2022.03.210601027
ZHENG Yanshuai, QIU Yang, XUE Kun, XU Zhengwen, ZHAO Haisheng, XIE Shouzhi. Study on Gasification Method of Metal Materials for Space Experiment (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 448-454. DOI: 10.11728/cjss2022.03.210601027
Citation: ZHENG Yanshuai, QIU Yang, XUE Kun, XU Zhengwen, ZHAO Haisheng, XIE Shouzhi. Study on Gasification Method of Metal Materials for Space Experiment (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 448-454. DOI: 10.11728/cjss2022.03.210601027

用于空间试验的金属物质气化方法

doi: 10.11728/cjss2022.03.210601027
基金项目: 国家自然科学基金项目(61871352),重点实验室稳定支持项目(JCKY2020210C614240305)和泰山学者工程项目(ts20190968)共同资助
详细信息
    作者简介:

    郑延帅:E-mail:yszheng1990@163.com

  • 中图分类号: P354

Study on Gasification Method of Metal Materials for Space Experiment

  • 摘要: 通过向电离层空间释放金属物质,形成高密度的等离子体云团,实现对电磁波反射与散射的方法,对于改善通信效果具有重要作用,是当前应急通信研究热点之一。根据气态形式释放金属才能充分与电离层相互作用生成电子密度增强区的原理,针对以往采用碱金属和碱土金属作为释放物,产生电子密度增强的机制主要是光致电离所带来的不足(白天效果明显,夜间效果较差),选用镧系金属作为新的释放物,并以镧系金属钐为例,建立了钛硼与钛碳两种自蔓延燃烧合成反应加热气化金属钐的理论模型。通过理论计算,确定了两种自蔓延合成反应体系加热气化金属钐的净放热量以及加热气化金属钐的最大效率。针对理论研究结果,对两种反应体系加热气化金属钐的方案开展试验研究,验证了理论分析的正确性,摆脱了电子密度增强主要依赖光致电离的缺点,提供了一种全天候释放电子密度的方法。

     

  • 图  1  钛碳和钛硼反应加热气化金属钐理论计算流程

    Figure  1.  Theoretical calculation flow chart of Ti-C and Ti-B reaction vaporization samarium

    图  2  试验用混合好的粉末(a)及压坯(b)

    Figure  2.  Mixed powder (a) and green compact (b) for experiment

    图  3  钛碳(a)与钛硼(b)气化金属钐的效率统计

    Figure  3.  Efficiency statistics of Ti-C (a) and Ti-B (b) gasification Sm

    表  1  相关金属及化合物的各热物性参数

    Table  1.   Thermal properties of related metals and compounds

    材料种类 熔化比热系数(固态)形成热$\Delta {H_{{\rm{f}}\left( {298} \right)}} / $
    $({\rm{kJ}} \cdot {\rm{mol}}^{-1})$
    气化
    熔点/℃熔化热$\Delta H / $
    $({\rm{kJ}} \cdot {\rm{mol}}^{-1}) $
    abc沸点/℃气化热$\Delta H / $
    $({\rm{kJ}} \cdot {\rm{mol}}^{-1}) $
    Ti 1660 5.0 19.8 7.9 0 0 3287 112.5
    B 2180 50.2 32.10 –0.07 –96.75 0 3650 489.7
    C 3500 0.11 38.9 –1.48 0 4827 355.8
    TiC 3140 83.6 49.45 3.35 –14.96 –184.46 4820
    TiB2 2980 50.2 54.07 –0.03 –21.63 –310.8 >3500
    Sm 1072 8.63 32.15 –0.49 –1.59 0 1791 166.4
     表中金属及化合物包括钛(Ti),硼(B),碳(C),碳化钛(TiC),硼化钛(TiB2),钐(Sm)。
    下载: 导出CSV

    表  2  钛碳反应净热量计算

    Table  2.   Calculation of net heat of Ti-C reaction

    反应方程式C+Ti=TiC总计净放热/(kJ·mol–1
    mol. weight12.0147.9059.959.91–89.06
    $\Delta {H_{\left( {298} \right)} }/({\rm{kJ} } \cdot {\rm{mo} }{ {\rm{l} }^{ - 1} })$00–184.46–184.46–1.49
    焓变H2064H298 /(kJ·mol–1)95.495.4
    下载: 导出CSV

    表  3  钛硼反应净热量计算

    Table  3.   Calculation of net heat of Ti-B reaction

    反应方程式2 B+Ti=TiB2总计净放热 /(kJ·mol–1
    mol. weight2×10.847.9069.5469.54–213.8
    $\Delta {H_{\left( {298} \right)} }/({\rm{kJ} } \cdot {\rm{mo} }{ {\rm{l} }^{ - 1} })$00–310.8–310.8–3.07
    焓变H2064H298 /(kJ·mol–1)97.097.0
    下载: 导出CSV
  • [1] KLOBUCHAR J A, ABDU M A. Equatorial ionospheric irregularities produced by the Brazilian ionospheric modification experiment (BIME)[J]. Journal of Geophysical Research: Space Physics, 1989, 94(A3): 2721-2726 doi: 10.1029/JA094iA03p02721
    [2] 许正文, 赵海生, 徐彬, 等. 电离层化学物质释放实验最新研究进展[J]. 电波科学学报, 2017, 32(2): 221-226

    XU Zhengwen, ZHAO Haisheng, XU Bin, et al. Latest development of chemical releases in ionosphere[J]. Chinese Journal of Radio Science, 2017, 32(2): 221-226
    [3] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟[J]. 物理学报, 2012, 61(8): 089401 doi: 10.7498/aps.61.089401

    HU Yaogai, ZHAO Zhengyu, ZHANG Yuannong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere[J]. Acta Physica Sinica, 2012, 61(8): 089401 doi: 10.7498/aps.61.089401
    [4] 朱肖丽, 胡耀垓, 赵正予, 等. 钡和铯释放的电离层扰动效应对比[J]. 物理学报, 2020, 69(2): 029401 doi: 10.7498/aps.69.20191266

    ZHU Xiaoli, HU Yaogai, ZHAO Zhengyu, et al. Comparison between ionospheric disturbances caused by barium and cesium[J]. Acta Physica Sinica, 2020, 69(2): 029401 doi: 10.7498/aps.69.20191266
    [5] 赵海生, 许正文, 徐朝辉, 等. 基于化学物质释放的电离层闪烁抑制方法研究[J]. 物理学报, 2019, 68(10): 109401 doi: 10.7498/aps.68.20182281

    ZHAO Haisheng, XU Zhengwen, XU Zhaohui, et al. Ionospheric scintillation suppression based on chemical release[J]. Acta Physica Sinica, 2019, 68(10): 109401 doi: 10.7498/aps.68.20182281
    [6] BERNHARDT P A, SIEFRING C L, BRICZINSKI S J, et al. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere[J]. Radio Science, 2017, 52(5): 559-577 doi: 10.1002/2016RS006078
    [7] BERNHARDT P A, BALLENTHIN J O, BAUMGARDNER J L, et al. Ground and space-based measurement of rocket engine burns in the ionosphere[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1267-1286 doi: 10.1109/TPS.2012.2185814
    [8] GAO J F, GUO L X, XU Z W, et al. Simulation of plasma instabilities artificially induced in the equatorial ionosphere[J]. Physics of Plasmas, 2020, 27(9): 092902 doi: 10.1063/5.0013329
    [9] 王劲东, 李磊, 陶然, 等. 电离层等离子体主动释放试验研究[J]. 空间科学学报, 2004, 34(6): 837-842

    WANG Jindong, LI Lei, TAO Ran, et al. Research on active plasma release experiment in ionosphere[J]. Chinese Journal of Space Science, 2004, 34(6): 837-842
    [10] 梁英教, 车荫昌, 刘晓霞, 等. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 339-382

    LIANG Yingjiao, CHE Yinchang, LIU Xiaoxia, et al. Thermodynamics Databook of Ingornic Compound[M]. Shenyang: Northeastern University Press, 1993: 339-382
    [11] GOLOMB D, HOFFMAN H S, BEST G T. Chemiluminescence of sodium released at night and its relation to the sodium nightglow[J]. Journal of Geophysical Research Atmospheres, 1975, 80(10): 1363-1366 doi: 10.1029/JA080i010p01363
    [12] 李建平, 倪文, 邱永侠, 等. SHS耐火材料的应用现状及发展前景[J]. 矿物岩石地球化学通报, 1999, 18(4): 309-311

    LI Jianping, NI Wen, QIU Yongxia, et al. The application situation and the developping prospect of SHS refractory[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1999, 18(4): 309-311
    [13] 王晓峰, 李建伟, 曹钦存. Ti-Si-C三元体系自蔓延高温合成的反应热力学研究[J]. 粉末冶金技术, 2008, 26(4): 286-290

    WANG Xiaofeng, LI Jianwei, CAO Qincun. Study on the thermodynamics of Ti-Si-C system in SHS[J]. Powder Metallurgy Technology, 2008, 26(4): 286-290
    [14] MUKASYAN A S, ROGACHEV A S. Discrete reaction waves: Gasless combustion of solid powder mixtures[J]. Progress in Energy and Combustion Science, 2008, 34(3): 377-416 doi: 10.1016/j.pecs.2007.09.002
    [15] 殷声. 燃烧合成[M]. 北京: 冶金工业出版社, 1999: 6

    YIN Sheng. Combustion Synthesis[M]. Beijing: Metallurgical Industry Press, 1999: 6
    [16] 徐强, 张幸红, 赫晓东, 等. TiB/Ti复合材料自蔓延高温燃烧合成的研究[J]. 材料科学与工艺, 2001, 9(4): 347-351 doi: 10.3969/j.issn.1005-0299.2001.04.003

    XU Qiang, ZHANG Xinghong, HAO Xiaodong, et al. Self-propagating high-temperature synthesis of TiB/Ti composites[J]. Material Science and Technology, 2001, 9(4): 347-351 doi: 10.3969/j.issn.1005-0299.2001.04.003
    [17] 王国亮, 高义民, 李烨飞, 等. 硼化钛结构稳定性、力学和热力学性能理论研究[J]. 稀有金属材料与工程, 2014, 43(3): 595-600

    WANG Guoliang, GAO Yimin, LI Yefei, et al. Theoretical study on the stabilities, mechanical and thermal properties of titanium borides[J]. Rare Metal Materials and Engineering, 2014, 43(3): 595-600
    [18] 陈燕群, 蒋明学. 自蔓延高温合成TiB2微粉的热力学计算[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(5): 728-730

    CHEN Yanqun, JIANG Mingxue. Thermodynamic calculation with self -propagating and high-temperature synthesis of TiB2 powder[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2006, 38(5): 728-730
    [19] 何祖明, 冯旺军, 夏咏梅, 等. 自蔓延高温合成TiC-Al的热力学计算与分析[J]. 甘肃科学学报, 2008, 20(3): 35-38 doi: 10.3969/j.issn.1004-0366.2008.03.010

    HE Zuming, FENG Wangjun, XIA Yongmei, et al. The thermodynamic calculation and analysis of Self-propagating High-temperature Synthesis TiC-Al[J]. Journal of Gansu Sciences, 2008, 20(3): 35-38 doi: 10.3969/j.issn.1004-0366.2008.03.010
    [20] 石建稳, 王引真, 李小龙. 自蔓延高温合成TiC-Ni金属陶瓷的热力学编程计算与分析[J]. 材料热处理学报, 2005, 26(1): 93-96

    SHI Jianwen, WANG Yinzhen, LI Xiaolong. Computation and analysis of thermodynamics of self-propagating high-temperature synthesis TiC-Ni cermets[J]. Transactions of Materials and Heat Treatment, 2005, 26(1): 93-96
    [21] 尹丹凤. 自蔓延高温合成金属钒的热力学研究[J]. 有色金属(冶炼部分), 2014(1): 37-39

    YIN Danfeng. Study on thermodynamics of vanadium self-propagating high-temperature synthesis[J]. Nonferrous Metals (Extractive Metallurgy), 2014(1): 37-39
    [22] 何祖明, 夏咏梅, 郑明芳, 等. 自蔓延高温合成MgCNi3的热力学计算与分析[J]. 常州大学学报(自然科学版), 2010, 22(4): 11-14

    HE Zuming, XIA Yongmei, ZHENG Mingfang, et al. Thermodynamics calculation and analysis of self-propagating high-temperature synthesis MgCNi3[J]. Journal of Jiangsu Polytechnic University, 2010, 22(4): 11-14
    [23] 梁建军, 王苏雯, 陈龙, 等. 火驱尾气中H2S与O2化学反应热力学研究[J]. 西安石油大学学报(自然科学版), 2019, 34(1): 95-99,114

    LIANG Jianjun, WANG Suwen, CHEN Long, et al. Thermodynamics of chemical reaction between H2S and O2 in in-situ combustion exhaust[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(1): 95-99,114
    [24] 陈国星, 陈云, 熊振兴. Ti-C-Al-Ni体系热爆反应的热力学理论分析及其影响因素[J]. 热处理技术与装备, 2008, 29(5): 5-10 doi: 10.3969/j.issn.1673-4971.2008.05.002

    CHEN Guoxing, CHEN Yun, XIONG Zhenxing. Thermodynamics analysis and influence factor on thermal explosion process of Ti-C-Al-Ni[J]. Heat Treatment Technology and Equipment, 2008, 29(5): 5-10 doi: 10.3969/j.issn.1673-4971.2008.05.002
    [25] 宋谋胜. 燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[D]. 上海: 上海交通大学, 2009

    SONG Mousheng. Investigation of the Formation Process and Growth Kinetics of Combustion Synthesized TiC and ZrC Crystals[D]. Shanghai: Shanghai Jiaotong University, 2009
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  212
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 录用日期:  2021-08-17
  • 修回日期:  2021-08-17
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回