留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

左旋寻常的极光千米波与辐射带高能电子相互作用的参数化研究

李文涛 张赛 贺佳贝 邓舟坤 杨奇武 商雄军 周庆华

李文涛, 张赛, 贺佳贝, 邓舟坤, 杨奇武, 商雄军, 周庆华. 左旋寻常的极光千米波与辐射带高能电子相互作用的参数化研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210421054
引用本文: 李文涛, 张赛, 贺佳贝, 邓舟坤, 杨奇武, 商雄军, 周庆华. 左旋寻常的极光千米波与辐射带高能电子相互作用的参数化研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210421054
LI Wentao, ZHANG Sai, HE Jiabei, DENG Zhoukun, YANG Qiwu, SHANG Xiongjun, ZHOU Qinghua. Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210421054
Citation: LI Wentao, ZHANG Sai, HE Jiabei, DENG Zhoukun, YANG Qiwu, SHANG Xiongjun, ZHOU Qinghua. Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210421054

左旋寻常的极光千米波与辐射带高能电子相互作用的参数化研究

doi: 10.11728/cjss2022.05.210421054
基金项目: 国家自然科学基金项目(42074198,42004141)和 空间天气学国家重点实验室项目(202014)共同资助
详细信息
    作者简介:

    李文涛:E-mail:13467349563@163.com

  • 中图分类号: P354

Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons

  • 摘要: 参数化研究了在L=4.5外辐射带区域左旋寻常(Left-hand Ordinary mode, L-O模)的极光千米波与高能电子的相互作用,定量计算了左旋寻常的极光千米波在不同峰值频率、传播角分布和纬度分布条件下的弹跳平均投掷角扩散系数、动量扩散系数和投掷角–动量交叉扩散系数。计算结果表明,动量扩散系数一般比投掷角扩散系数大100倍左右,说明动量扩散在L-O模与电子间的相互作用中起主导作用。随着传播角范围的改变,扩散系数均未发生明显变化,这说明L-O模与电子相互作用的扩散系数对传播角范围的依赖性很小。此外,扩散系数会因为L-O模纬度分布的改变而发生剧烈变化,该结果与之前得到的纬度分布对右旋奇异的极光千米波的影响是一致的。通过参数化研究结果表明,适当条件下,L-O模可能会显著影响外辐射带高能电子的动力学过程。

     

  • 图  1  不同峰值频率的投掷角(上)、动量(中)及投掷角–动量交叉(下)弹跳平均扩散系数2D结果

    Figure  1.  Two-dimensional bounce-averaged diffusion coefficients of pitch angle (a) (d) (g), momentum (b) (e) (h), and cross (c) (f) (i),respectively at L = 4.5

    图  2  不同峰值频率的投掷角(上)、动量(中)及投掷角–动量交叉(下)弹跳平均扩散系数1D结果

    Figure  2.  Corresponding to Figure 1, bounce-averaged diffusion coefficients of pitch angle (a) (d) (g), momentum (b) (e) (h), and cross (c) (f) (i)

    图  3  能量为1 MeV的投掷角扩散系数(Daa)与动量扩散系数(Dpp)的对比

    Figure  3.  Comparison of the pitch angle diffusion coefficient (Daa) and momentum diffusion coefficient (Dpp) with energy of 1 MeV

    图  4  不同传播角分布为的投掷角(左)、动量(中)及投掷角–动量交叉(右)弹跳平均扩散系数2D结果

    Figure  4.  Two-dimensional bounce-averaged diffusion coefficients of pitch angle (left), momentum (middle), and cross (right) for different wave normal angle distributions

    图  5  不同传播角分布)的投掷角(左)、动量(中)及投掷角–动量交叉(右)弹跳平均扩散系数(单位$ {s}^{-1} $)1D结果

    Figure  5.  Corresponding to Figure 4, bounce-averaged diffusion coefficients of pitch angle(left), momentum (middle), and cross (right) for different wave normal angle distributions

    图  6  不同纬度分布的投掷角(上)、动量(中)及投掷角–动量交叉(下)弹跳平均扩散系数2D结果

    Figure  6.  Two-dimensional bounce-averaged diffusion coefficients of pitch angle (top), momentum (middle), and cross (bottom) for different wave latitudinal distributions

    图  7  不同纬度分布的投掷角(上)、动量(中)及投掷角–动量交叉(下)弹跳平均扩散系数1D结果

    Figure  7.  Bounce-averaged diffusion coefficients of pitch angle (top), momentum (middle), and cross (bottom) for different wave latitudinal distributions

  • [1] GURNETT D A. The earth as a radio source: terrestrial kilometric radiation[J]. Journal of Geophysical Research: Research, 1974, 79(28): 4227-4238 doi: 10.1029/JA079i028p04227
    [2] HANASZ J, SCHREIBER R, PICKETT J, et al. Pulsations of auroral kilometric radiation at Pc1 frequencies[J]. Geophysical Research Letters, 2008, 35(15): L15819 doi: 10.1029/2008GL034609
    [3] KURTH W S, BAUMBACK M M, GURNETT D A. Direction-finding measurements of auroral kilometric radiation[J]. Journal of Geophysical Research: Research, 1975, 80(19): 2764-2770 doi: 10.1029/JA080i019p02764
    [4] WU C S, LEE L C. A theory of the terrestrial kilometric radiation[J]. The Astrophysical Journal, 1979, 230: 621-626 doi: 10.1086/157120
    [5] CALVERT W. The signature of auroral kilometric radiation on Isis 1 ionograms[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A1): 76-82 doi: 10.129/JA086iA01p00076
    [6] CALVERT W. The auroral plasma cavity[J]. Geophysical Research Letters, 1981, 8(8): 919-921 doi: 10.1029/GL008i008p00919
    [7] GURNETT D A, SHAWHAN S D, SHAW R R. Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A1): 329-340 doi: 10.1029/JA088iA01p00329
    [8] HASHIMOTO K, CALVERT W. Observation of the Z mode with DE 1 and its analysis by three‐dimensional ray tracing[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A4): 3933-3942 doi: 10.1029/JA095iA04p03933
    [9] SUMMERS D, THORNE R M, XIAO F L. Gyroresonant acceleration of electrons in the magnetosphere by superluminous electromagnetic waves[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A6): 10853-10868 doi: 10.1029/2000JA000309
    [10] XIAO F L, HE H Y, ZHOU Q H, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave modes in space plasmas[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A11): A11201 doi: 10.1029/2006JA011865
    [11] XIAO F L, SU Z P, CHEN L X, et al. A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10217 doi: 10.1029/2010ja015374
    [12] ZHANG S, SHANG X J, HE Y H, et al. Dominant roles of high harmonics on interactions between AKR and radiation belt relativistic electrons[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088421 doi: 10.1029/2020GL088421
    [13] HUFF R L, CALVERT W, CRAVEN J D, et al. Mapping of auroral kilometric radiation sources to the aurora[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A10): 11445-11454 doi: 10.1029/JA093iA10p11445
    [14] KURTH W S, DE PASCUALE S, FADEN J B, et al. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 904-914 doi: 10.1002/2014JA020857
    [15] XIAO F L, ZHOU Q H, SU Z P, et al. Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts[J]. Geophysical Research Letters, 2016, 43(23): 11971-11978 doi: 10.1002/2016GL071728
    [16] ZHAO W L, LIU S, ZHANG S, et al. Global occurrences of auroral kilometric radiation related to suprathermal electrons in radiation belts[J]. Geophysical Research Letters, 2019, 46(13): 7230-7236 doi: 10.1029/2019GL083944
    [17] ZHANG S, LIU S, LI W T, et al. A concise empirical formula for the field-aligned distribution of auroral kilometeric radiation based on Arase satellite and Van Allen Probes[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092805 doi: 10.1029/2021GL092805
    [18] HANASZ J, PANCHENKO M, DE FERAUDY H, et al. Occurrence distributions of the auroral kilometric radiation ordinary and extraordinary wave modes[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A11): 1408 doi: 10.1029/2002JA009579
    [19] NAKAMURA Y, FUKUDA S, SHIBANO Y, et al. Exploration of energization and radiation in geospace (ERG): challenges, development, and operation of satellite systems[J]. Earth Planets and Space, 2018, 70(1): 102 doi: 10.1186/s40623-018-0863-z
    [20] STIX T H. Waves in Plasmas[M]. 2 nd ed. New York: American Institute of Physics, 1992.
    [21] LYONS L R, WILLIAMS D J. Quantitative Aspects of Magnetospheric Physics[M]. Dordrecht Boston: Springer, 1984.
    [22] GLAUERT S A, HORNE R B. Calculation of pitch angle and energy diffusion coefficients with the PADIE code[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04206 doi: 10.1029/2004JA010851
    [23] SUMMERS D, NI B B. Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons[J]. Earth, Planets and Space, 2008, 60(7): 763-771 doi: 10.1186/BF03352825
    [24] SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A8): A08213 doi: 10.1029/2005JA011159
    [25] LYONS L R. Pitch angle and energy diffusion coefficients from resonant interactions with ion–cyclotron and whistler waves[J]. Journal of Plasma Physics, 1974, 12(3): 417-432 doi: 10.1017/S002237780002537X
    [26] SUMMERS D, THORNE R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A4): 1143 doi: 10.1029/2002JA009489
    [27] ERGUN R E, CARLSON C W, MCFADDEN J P, et al. FAST satellite wave observations in the AKR source region[J]. Geophysical Research Letters, 1998, 25(12): 2061-2064 doi: 10.1029/98GL00570
    [28] XIAO F L, CHEN L J, ZHENG H N, et al. A parametric ray tracing study of superluminous auroral kilometric radiation wave modes[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A10): A10214 doi: 10.1029/2006JA012178
    [29] SHPRITS Y Y, NI B. Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A11): A11205 doi: 10.1029/2009JA014223
    [30] THORNE R M, O'BRIEN T P, SHPRITS Y Y, et al. Timescale for MeV electron microburst loss during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09202 doi: 10.1029/2004JA010882
    [31] SUMMERS D, NI B B, MEREDITH N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A4): A04207 doi: 10.1029/2006JA011993
    [32] XIAO F L, THORNE R M, SUMMERS D. Higher-order gyroresonant acceleration of electrons by superluminous (AKR) wave-modes[J]. Planetary and Space Science, 2007, 55(10): 1257-1271 doi: 10.1016/j.pss.2007.02.004
    [33] LI W, SHPRITS Y Y, THORNE R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A10): A10220 doi: 10.1029/2007JA012368
    [34] XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201 doi: 10.1029/2008JA013580
    [35] DENTON R E, GOLDSTEIN J, MENIETTI J D, et al. Magnetospheric electron density model inferred from Polar plasma wave data[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A11): 1386 doi: 10.1029/2001JA009136
  • 加载中
图(7)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  5
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 录用日期:  2022-04-13
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-10-08

目录

    /

    返回文章
    返回