留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of High-energy Particle Detectors for Space Exploration at the National Space Science Center

YANG Zhe SHEN Guohong JING Tao

YANG Zhe, SHEN Guohong, JING Tao. Development of High-energy Particle Detectors for Space Exploration at the National Space Science Center. Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210611068
Citation: YANG Zhe, SHEN Guohong, JING Tao. Development of High-energy Particle Detectors for Space Exploration at the National Space Science Center. Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210611068

Development of High-energy Particle Detectors for Space Exploration at the National Space Science Center

doi: 10.11728/cjss2022.05.210611068
More Information
  • Figure  1.  A picture of the space particle direction detector

    Figure  2.  Direction distribution of high-energy electrons measured by Tiangong-I PDD. (a) Electron radiation intensity of Tiangong-I in the center of the South Atlantic anomaly zone in different directions. (b) Distribution of electron fluxes (>35 keV) in the center of the South Atlantic anomaly zone with the pitch angle

    Figure  3.  Direction distribution of high-energy proton measured by Tiangong-I PDD. (a) The proton radiation intensity of Tiangong-I in the center of the South Atlantic anomaly zone in different directions. (b) The distribution of proton fluxes (1.5~200 keV) in the center of the South Atlantic anomaly zone with the pitch angle

    Figure  4.  Schematic structure of energy particle detector

    Figure  5.  Global distributions of FY-3C protons during 1-15 October 2013

    Figure  6.  Global distributions of FY-3C electrons during 16 October to 15 November 2013

    Figure  7.  High-energy electron detector and high-energy proton and heavy ion detector of FY-2F(G).

    Figure  8.  High energy particle detector of FY-4A.

    Figure  9.  Fluxes of relativistic electron (> 2 MeV) from FY4A and GOES-13 during 3-9 March 2017

    Figure  10.  Fight model of HEPD onboard TC-1.

    Figure  11.  Comparison between AP8-predicted high energy proton omni-directional flux and the directional flux of HEPD/TC-1 on January 2004

    Figure  12.  Solar wind ion detector (left side) and high energy particle detector (right side).

    Figure  13.  Lunar Lander Neutron and Dosimetry equipment

    Figure  14.  Temporal evolution of the radiation environment on the Moon as measured by LND on Chang’E-4. (a) Total radiation dose rate, (b) radiation dose rate of neutral particles, (c) radiation dose rate of charged particles, (d) penetrating flux of high-energy charged particles, and (e) ground measured neutron result.

    Table  1.   Energy range of Shenzhou-IV/V HEED and HEPHID

    HEEDHEPHEI
    Energy range of
    each channel
    E1: 0.20~0.40 MeV P1: 2.9~4.0 MeV
    E2: 0.50~0.60 MeV P2: 4.0~5.4 MeV
    E3: 0.60~0.80 MeV P3: 5.4~8.0 MeV
    E4: 0.80~1.00 MeV P4: 8.0~15 MeV
    E5: 1.00~1.30 MeV P5: 15~26 MeV
    E6: 1.30~1.60 MeV P6: 26~32 MeV
    E7: 1.60~2.00 MeV P7: 32~60 MeV
    E8: 2.00~5.00 MeV P8: 60~100 MeV
    P9: 100~160 MeV
    P10: 160~300 MeV
    Heavy ions: 4~26 MeV
    per nucleon
    α particles: 4~26 MeV
    per nucleon
    下载: 导出CSV

    Table  2.   Main parameters of the PDD

    Directional flux sensorElectron energy spectrum sensorProton energy spectrum sensor
    Energy rangeHigh-energy electrons: > 100 keV0.2~10 MeV3~300 MeV
    High-energy protons: 1.5~200 MeV
    Field of view180°×15°30°40°
    下载: 导出CSV

    Table  3.   Some parameter indices of Experimental Module I

    Parameter TypeParameter index
    Energy spectrum rangeProtons20 keV~300 MeV
    Heavy ions8~400 MeV per nucleon
    Electrons20 keV~10 MeV
    Neutrons0.025 eV~100 MeV
    Particle composition discriminationDistinguish protons, heavy ions He ~Fe (2 ≤ Z ≤ 26), electrons, and neutrons
    LET spectrum range0.001~75 MeV·mg·cm–2
    (≥64 channels)
    >75 MeV·mg·cm–2 (1 channel)
    Precision: better than 15%
    Dose rate0.01~100 rad·day–1(Si)
    下载: 导出CSV

    Table  4.   Some parameters of SEMs of Fengyun polar-orbiting satellites

    ElectronsProtonsHeavy-ions
    FY-1C/D E >1.6 MeV P1: 2.9~102 MeV He: 12~102 MeV
    P2: 5.4~11.7 MeV Be: 30~320 MeV
    P3: 11.7~40 MeV C: 60~570 MeV
    P4: 40~100 MeV Mg: 0.2~1.7 GeV
    P5: 100~300 MeV Ar: 0.3~2.8 GeV
    Fe: 0.5~2.3 GeV
    FY-3A(B) E1: 0.15~0.35 MeV P1: 3.0~5.0 MeV He: 11.6~104 MeV
    E2: 0.35~0.65 MeV P2: 5.0~10 MeV Li: 24.5~215 MeV
    E3: 0.65~1.2 MeV P3: 10~26 MeV C: 61~590 MeV
    E4: 1.2~1.9 MeV P4: 26~40 MeV Mg: 0.195~1.2 GeV
    E5: 1.9~5.6 MeV P5: 40~103 MeV Ar: 0.29~2 GeV
    P6: 103~308 MeV Fe: 0.49~2.0 GeV
    FY-3C(D) E1: 0.15~0.35 MeV P1: 3.0~5.0 MeV He: 12~110 MeV
    E2: 0.35~0.65 MeV P2: 5.0~10 MeV Li: 24~220 MeV
    E3: 0.65~1.2 MeV P3: 10~26 MeV C: 61~570 MeV
    E4: 1.2~2.0 MeV P4: 26~40 MeV Mg: 0.2~1.2 GeV
    E5: 2.0~5.7 MeV P5: 40~100 MeV Ar: 0.3~2 GeV
    P6: 100~300 MeV Fe: 0.5~2.0 GeV
    下载: 导出CSV

    Table  5.   Particle species and energy range of the SEMs of Fengyun geostationary meteorological satellite

    High-energy electrons/MeVHigh-energy protons/MeVHeavy ions
    FY-2 A(B) E : >1.4 MeV P4: > 1.1 MeV 3He, 3.5~26 MeV/n
    P1: 3.5~26 MeV 4He, 3.5~26 MeV/n
    P2: 10~26 MeV
    P3: 26~300 MeV
    FY-2 C(D/E) E1 : ≥350 keV P1: 10~30 MeV He, 40~120 MeV
    E2 : ≥2.0 MeV P2: 30~100 MeV Li, 80~240 MeV
    P3: 100~300 MeV
    FY-2 F(G) E1: 0.2~0.3 MeV P1: 4~9 MeV He1, 4~10 MeV/n
    E2: 0.3~0.4 MeV P2: 9~15 MeV He2, 10~20 MeV/n
    E3: 0.4~0.5 MeV P3: 15~22 MeV He3, >20 MeV/n
    E4: 0.5~0.6 MeV P4: 22~40 MeV
    E5: 0.6~0.8 MeV P5: 40~80 MeV
    E6: 0.8~1.0 MeV P6: 80~165 MeV
    E7: 1.0~1.5 MeV P7: >165 MeV
    E8≥1.5 MeV
    E9≥2.0 MeV
    E10≥3.0 MeV
    E11≥4.0 MeV
    FY-4 A E1: 0.4~0.5 MeV P1: 1~2 MeV
    E2: 0.5~0.6 MeV P2: 2~4 MeV
    E3: 0.6~0.8 MeV P3: 4~9 MeV
    E4: 0.8~1.0 MeV P4: 9~15 MeV
    E5: 1.0~1.2 MeV P5: 15~40 MeV
    E6: 1.2~1.5 MeV P6: 40~80 MeV
    E7: 1.5~2.0 MeV P7: 80~165 MeV
    E8: 2.0~4.0 MeV P8 >165 MeV
    E9 >2.0 MeV
    下载: 导出CSV

    Table  6.   Main parameters of particle detectors onboard TC-1/2

    HEEDHEPDHID
    Geometric factor 0.0274 cm2·sr 0.1105 cm2·sr 0.255 cm2·sr
    Count rate 0~105 s–1 0~105 s–1 NC
    Energy range 0.2~10 MeV 3~400 MeV 12 MeV (He+)~8 GeV (Fe)
    Energy channels E0: 0.2~0.4 MeV P1: 3.0~5.0 MeV He: 12~50 MeV, 50~130 MeV,
    130~220 MeV, 220~50 MeV
    E1: 0.4~0.5 MeV P2: 5.0~10.0 MeV Li: 23~250 MeV
    E2: 0.5~0.6 MeV P3: 10~20 MeV Be: 36~390 MeV
    E3: 0.6~0.8 MeV P4: 20~30 MeV B: 53~640 MeV
    E4: 0.8~1.0 MeV P5: 30~50 MeV C: 70~700 MeV
    E5: 1.0~1.5 MeV P6: 50~100 MeV N: 89~890 MeV
    E6: 1.5~2.0 MeV P7: 100~200 MeV O: 109~1090 MeV
    E7: 2.0~3.0 MeV P8: 200~400 MeV F: 137~1341 MeV
    E8: 3.0~10.0 MeV Mg: 200~2000 MeV
    Ar: 380~400 MeV
    Fe: 640~7000 MeV
    下载: 导出CSV
  • [1] WANG Tongquan, SHEN Yongping, WANG Shangwu, et al. Radiation effects in the space radiation environment[J]. Journal of National University of Defense Technology, 1999(4): 36-39
    [2] XU Ying, ZHU Guangwu, WANG Shijin, et al. Shenzhou spacecraft space environment monitoring system[J]. Spacecraft Engineering, 2004(1): 141-148
    [3] XU Ying, WANG Shijin, ZHU Guangwu, et al. Development of space environmental monitors on Chinese manned spacecraft[J]. Science & Technology Review, 2010, 28(8): 110-115
    [4] ZHANG Wei, ZHU Guangwu, WANG Shijin, et al. High energy particle detector of Shenzhou spacecraft[C]//Proceedings of the 16 th Academic Conference of the Space Exploration Professional Committee of the Chinese Space Science Society. Beihai: Chinese Society of Space Research, 2003: 20-25
    [5] YE Zonghai. Space environment studies for the SZ-4 spacecraft[J]. Physics, 2004, 33(1): 40-48 doi: 10.3321/j.issn:0379-4148.2004.01.009
    [6] YANG Xiaochao, WANG Shijin, WANG Yue. Analysis of high energy electron distribution in manned space orbit[C]//Proceedings of the 16 th Academic Conference of the Space Exploration Professional Committee of the Chinese Space Science Society. Beihai: Chinese Society of Space Research, 2003: 189-193
    [7] SHEN Guohong, WANG Shijin, ZHANG Shenyi, et al. A particles’ direction detector on manned space II[J]. Nuclear Electronics & Detection Technology, 2012, 32(5): 535-538 doi: 10.3969/j.issn.0258-0934.2012.05.009
    [8] CMS. About CMS[EB/OL]. [2021-06-06]. http://en.cmse.gov.cn/aboutcms/
    [9] YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658 doi: 10.1175/BAMS-D-16-0065.1
    [10] WANG Shijin, ZHU Guangwu, LIANG Jinbao, et al. FY-1 C space particle composition monitor and its detection results[C]//Proceedings of the Twelfth Academic Conference of the Space Exploration Professional Committee of the Chinese Society of Space Sciences. Kunming: Space Exploration Professional Committee of Chinese Society for Space Science, 1999: 121-124
    [11] DONG C H, YANG J, ZHANG W J, et al. An overview of a new Chinese weather satellite FY-3 A[J]. Bulletin of the American Meteorological Society, 2009, 90(10): 1531-1544 doi: 10.1175/2009BAMS2798.1
    [12] LI Jiawei, HUANG Cong, YU Chao, et al. Inspection and application of energetic particles data of FY-3 C/SEM satellite[J]. National Remote Sensing Bulletin, 2018, 22(1): 76-86 doi: 10.11834/jrs.20186413
    [13] RIPOLL J F, CLAUDEPIERRE S G, UKHORSKIY A Y, et al. Particle dynamics in the earth’s radiation belts: review of current research and open questions[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA026735
    [14] WANG Chunqin, ZHANG Xin, ZHANG Liguo, et al. Space radiation environment observations and applications based on GEO satellites[J]. Aerospace Shanghai, 2017, 34(4): 85-95
    [15] LIU Zhen, YANG Xiaochao, ZHANG Xiaoxin, et al. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4 A and GOES-13[J]. Acta Physica Sinica, 2019, 68(15): 159401 doi: 10.7498/aps.68.20190433
    [16] LIU Z X, ESCOUBET C P, PU Z, et al. The Double Star mission[J]. Annales Geophysicae, 2005, 23(8): 2707-2712 doi: 10.5194/angeo-23-2707-2005
    [17] DUNLOP M W, ESCOUBET C P, LIU Z X, et al. Double star: mission, instruments and joint observations[M]//LAAKSO H, TAYLOR M, ESCOUBET C P. The Cluster Active Archive. Dordrecht: Springer, 2010: 331-346
    [18] CAO J B, LIU Z X, YAN C X, et al. First results of Chinese particle instruments in the Double Star program[J]. Annales Geophysicae, 2005, 23(8): 2775-2784 doi: 10.5194/angeo-23-2775-2005
    [19] LIU Zhenxing. Geospace Double Star exploration project[J]. Chinese Journal of Geophysics, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016
    [20] OUYANG Z Y, LI C L, ZOU Y L, et al. Chang’E-1 lunar mission: an overview and primary science results[J]. Chinese Journal of Space Science, 2010, 30(5): 392-403,391
    [21] WANG Xinyue, JING Tao, ZHANG Shenyi, et al. The first results of Chang’E -1 high energetic particles detector[J]. Progress in Geophysics, 2012, 27(6): 2289-2295 doi: 10.6038/j.issn.1004-2903.2012.06.003
    [22] WANG Chi, ZHANG Xianguo, XU Xinfeng, et al. The lunar and deep space environment exploration in China[J]. Journal of Deep Space Exploration, 2019, 6(2): 105-118
    [23] WANG Xinyue, ZHANG Aibing, JING Tao, et al. The lunar charged particle environment by Chang’E-1 and Chang’E-2[J]. Journal of Deep Space Exploration, 2019, 6(2): 119-126
    [24] LI C L, ZUO W, WEN W B, et al. Overview of the Chang’E-4 mission: opening the frontier of scientific exploration of the lunar far side[J]. Space Science Reviews, 2021, 217(2): 35 doi: 10.1007/s11214-021-00793-z
    [25] JIA Y Z, ZOU Y L, PING J S, et al. The scientific objectives and payloads of Chang’E−4 mission[J]. Planetary and Space Science, 2018, 162: 207-215 doi: 10.1016/j.pss.2018.02.011
    [26] YE Peijian, SUN Zezhou, ZHANG He, et al. Mission design of Chang’e-4 probe system[J]. Scientia Sinica:Technologica, 2019, 49(2): 124-137 doi: 10.1360/N092018-00400
    [27] ZHANG Shenyi, HOU Donghui, WIMMER-SCHWEINGRUBER R F, et al. Radiation dose of LND on the lunar surface in two years[J]. Chinese Journal of Space Science, 2021, 41(3): 439-444 doi: 10.11728/cjss2021.03.439
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 录用日期:  2022-03-09
  • 修回日期:  2022-03-22
  • 网络出版日期:  2022-09-26

目录

    /

    返回文章
    返回