Development of High-energy Particle Detectors for Space Exploration
doi: 10.11728/cjss2022.05.210611068
-
Abstract: Space environment exploration is a hot topic globally. The scope of space exploration ranges from near-Earth space to the moon, other planets in the solar system, and even the heliosphere and interplanetary space. It is used for various crucial applications, including aerospace technology development, space weather research, understanding the origin and evolution of the universe, searching for extraterrestrial life, and finding human livable places. Although China’s space environment exploration started late, its progress has been rapid. China is gradually narrowing the gap with advanced countries and may eventually lead the world in space research. This article briefly reviews the development history of China’s space environmental detectors.
-
Figure 2. Direction distribution of high-energy electrons measured by Tiangong-I PDD. (a) Electron radiation intensity of Tiangong-I in the center of the South Atlantic anomaly zone in different directions. (b) Distribution of electron fluxes (>35 keV) in the center of the South Atlantic anomaly zone with the pitch angle
Figure 3. Direction distribution of high-energy proton measured by Tiangong-I PDD. (a) The proton radiation intensity of Tiangong-I in the center of the South Atlantic anomaly zone in different directions. (b) The distribution of proton fluxes (1.5~200 keV) in the center of the South Atlantic anomaly zone with the pitch angle
Figure 14. Temporal evolution of the radiation environment on the Moon as measured by LND on CE-4. (a) Total radiation dose rate, (b) radiation dose rate of neutral particles, (c) radiation dose rate of charged particles, (d) penetrating flux of high-energy charged particles, and (e) ground measured neutron result
Table 1. Energy range channels of Shenzhou-IV/V HEED and HEPHID
HEED HEPHEI E1: 0.20~0.40 MeV P1: 2.9~4.0 MeV E2: 0.50~0.60 MeV P2: 4.0~5.4 MeV E3: 0.60~0.80 MeV P3: 5.4~8.0 MeV E4: 0.80~1.00 MeV P4: 8.0~15 MeV E5: 1.00~1.30 MeV P5: 15~26 MeV E6: 1.30~1.60 MeV P6: 26~32 MeV E7: 1.60~2.00 MeV P7: 32~60 MeV E8: 2.00~5.00 MeV P8: 60~100 MeV P9: 100~160 MeV P10: 160~300 MeV Heavy ions: 4~26 MeV
per nucleonα particles: 4~26 MeV
per nucleonTable 2. Main parameters of the PDD
Directional flux
sensorElectron energy spectrum sensor Proton energy spectrum sensor Energy range High-energy
electrons: > 100 keV0.2~10 MeV 3~300 MeV High-energy protons: 1.5~200 MeV Field of view 180°×15° 30° 40° Table 3. Some parameter indices of Experimental Module I
Parameter type Parameter index Energy spectrum range Protons 20 keV~300 MeV Heavy ions 8~400 MeV per nucleon Electrons 20 keV~10 MeV Neutrons 0.025 eV~100 MeV Particle composition discrimination Distinguish protons, heavy ions He~Fe (2 ≤ Z ≤ 26), electrons, and neutrons LET spectrum range 0.001~75 MeV·mg·cm–2
(≥64 channels)>75 MeV·mg·cm–2 (1 channel) Precision: better than 15% Dose rate 0.01~100 rad·d–1(Si) Table 4. Some parameters of SEMs of Fengyun polar-orbiting satellites
Electrons Protons Heavy-ions FY-1C/D E >1.6 MeV P1: 2.9~102 MeV He: 12~102 MeV P2: 5.4~11.7 MeV Be: 30~320 MeV P3: 11.7~40 MeV C: 60~570 MeV P4: 40~100 MeV Mg: 0.2~1.7 GeV P5: 100~300 MeV Ar: 0.3~2.8 GeV Fe: 0.5~2.3 GeV FY-3A(B) E1: 0.15~0.35 MeV P1: 3.0~5.0 MeV He: 11.6~104 MeV E2: 0.35~0.65 MeV P2: 5.0~10 MeV Li: 24.5~215 MeV E3: 0.65~1.2 MeV P3: 10~26 MeV C: 61~590 MeV E4: 1.2~1.9 MeV P4: 26~40 MeV Mg: 0.195~1.2 GeV E5: 1.9~5.6 MeV P5: 40~103 MeV Ar: 0.29~2 GeV P6: 103~308 MeV Fe: 0.49~2.0 GeV FY-3C(D) E1: 0.15~0.35 MeV P1: 3.0~5.0 MeV He: 12~110 MeV E2: 0.35~0.65 MeV P2: 5.0~10 MeV Li: 24~220 MeV E3: 0.65~1.2 MeV P3: 10~26 MeV C: 61~570 MeV E4: 1.2~2.0 MeV P4: 26~40 MeV Mg: 0.2~1.2 GeV E5: 2.0~5.7 MeV P5: 40~100 MeV Ar: 0.3~2 GeV P6: 100~300 MeV Fe: 0.5~2.0 GeV Table 5. Particle species and energy range of the SEMs of Fengyun geostationary meteorological satellite
High-energy electrons/MeV High-energy protons/MeV Heavy ions FY-2 A(B) E : >1.4 MeV P4: > 1.1 MeV 3He, 3.5~26 MeV/n P1: 3.5~26 MeV 4He, 3.5~26 MeV/n P2: 10~26 MeV P3: 26~300 MeV FY-2 C(D/E) E1 : ≥350 keV P1: 10~30 MeV He, 40~120 MeV E2 : ≥2.0 MeV P2: 30~100 MeV Li, 80~240 MeV P3: 100~300 MeV FY-2 F(G) E1: 0.2~0.3 MeV P1: 4~9 MeV He1, 4~10 MeV/n E2: 0.3~0.4 MeV P2: 9~15 MeV He2, 10~20 MeV/n E3: 0.4~0.5 MeV P3: 15~22 MeV He3, >20 MeV/n E4: 0.5~0.6 MeV P4: 22~40 MeV E5: 0.6~0.8 MeV P5: 40~80 MeV E6: 0.8~1.0 MeV P6: 80~165 MeV E7: 1.0~1.5 MeV P7: >165 MeV E8≥1.5 MeV E9≥2.0 MeV E10≥3.0 MeV E11≥4.0 MeV FY-4 A E1: 0.4~0.5 MeV P1: 1~2 MeV E2: 0.5~0.6 MeV P2: 2~4 MeV E3: 0.6~0.8 MeV P3: 4~9 MeV E4: 0.8~1.0 MeV P4: 9~15 MeV E5: 1.0~1.2 MeV P5: 15~40 MeV E6: 1.2~1.5 MeV P6: 40~80 MeV E7: 1.5~2.0 MeV P7: 80~165 MeV E8: 2.0~4.0 MeV P8 >165 MeV E9 >2.0 MeV Table 6. Main parameters of particle detectors onboard TC-1/2
HEED HEPD HID Geometric factor 0.0274 cm2·sr 0.1105 cm2·sr 0.255 cm2·sr Count rate 0~105 s–1 0~105 s–1 NC Energy range 0.2~10 MeV 3~400 MeV 12 MeV (He+)~8 GeV (Fe) Energy channels E0: 0.2~0.4 MeV P1: 3.0~5.0 MeV He: 12~50 MeV, 50~130 MeV,
130~220 MeV, 220~50 MeVE1: 0.4~0.5 MeV P2: 5.0~10.0 MeV Li: 23~250 MeV E2: 0.5~0.6 MeV P3: 10~20 MeV Be: 36~390 MeV E3: 0.6~0.8 MeV P4: 20~30 MeV B: 53~640 MeV E4: 0.8~1.0 MeV P5: 30~50 MeV C: 70~700 MeV E5: 1.0~1.5 MeV P6: 50~100 MeV N: 89~890 MeV E6: 1.5~2.0 MeV P7: 100~200 MeV O: 109~1090 MeV E7: 2.0~3.0 MeV P8: 200~400 MeV F: 137~1341 MeV E8: 3.0~10.0 MeV Mg: 200~2000 MeV Ar: 380~400 MeV Fe: 640~7000 MeV -
[1] WANG Tongquan, SHEN Yongping, WANG Shangwu, et al. Radiation effects in the space radiation environment[J]. Journal of National University of Defense Technology, 1999(4): 36-39 [2] XU Ying, ZHU Guangwu, WANG Shijin, et al. Shenzhou spacecraft space environment monitoring system[J]. Spacecraft Engineering, 2004(1): 141-148 [3] XU Ying, WANG Shijin, ZHU Guangwu, et al. Development of space environmental monitors on Chinese manned spacecraft[J]. Science & Technology Review, 2010, 28(8): 110-115 [4] ZHANG Wei, ZHU Guangwu, WANG Shijin, et al. High energy particle detector of Shenzhou spacecraft[C]//Proceedings of the 16 th Academic Conference of the Space Exploration Professional Committee of the Chinese Space Science Society. Beihai: Chinese Society of Space Research, 2003: 20-25 [5] YE Zonghai. Space environment studies for the SZ-4 spacecraft[J]. Physics, 2004, 33(1): 40-48 doi: 10.3321/j.issn:0379-4148.2004.01.009 [6] YANG Xiaochao, WANG Shijin, WANG Yue. Analysis of high energy electron distribution in manned space orbit[C]//Proceedings of the 16th Academic Conference of the Space Exploration Professional Committee of the Chinese Space Science Society. Beihai: Chinese Society of Space Research, 2003: 189-193 [7] SHEN Guohong, WANG Shijin, ZHANG Shenyi, et al. A particles’ direction detector on manned space II[J]. Nuclear Electronics & Detection Technology, 2012, 32(5): 535-538 doi: 10.3969/j.issn.0258-0934.2012.05.009 [8] CMS. About CMS[EB/OL]. [2021-06-06]. http://en.cmse.gov.cn/aboutcms/ [9] YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658 doi: 10.1175/BAMS-D-16-0065.1 [10] WANG Shijin, ZHU Guangwu, LIANG Jinbao, et al. FY-1 C space particle composition monitor and its detection results[C]//Proceedings of the Twelfth Academic Conference of the Space Exploration Professional Committee of the Chinese Society of Space Sciences. Kunming: Space Exploration Professional Committee of Chinese Society for Space Science, 1999: 121-124 [11] DONG C H, YANG J, ZHANG W J, et al. An overview of a new Chinese weather satellite FY-3 A[J]. Bulletin of the American Meteorological Society, 2009, 90(10): 1531-1544 doi: 10.1175/2009BAMS2798.1 [12] LI Jiawei, HUANG Cong, YU Chao, et al. Inspection and application of energetic particles data of FY-3 C/SEM satellite[J]. National Remote Sensing Bulletin, 2018, 22(1): 76-86 doi: 10.11834/jrs.20186413 [13] RIPOLL J F, CLAUDEPIERRE S G, UKHORSKIY A Y, et al. Particle dynamics in the Earth’s radiation belts: review of current research and open questions[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA026735 [14] WANG Chunqin, ZHANG Xin, ZHANG Liguo, et al. Space radiation environment observations and applications based on GEO satellites[J]. Aerospace Shanghai, 2017, 34(4): 85-95 [15] LIU Zhen, YANG Xiaochao, ZHANG Xiaoxin, et al. On-orbit cross-calibration and assimilation for relativistic electron observations from Fengyun-4A and GOES-13[J]. Acta Physica Sinica, 2019, 68(15): 159401 doi: 10.7498/aps.68.20190433 [16] LIU Z X, ESCOUBET C P, PU Z, et al. The Double Star mission[J]. Annales Geophysicae, 2005, 23(8): 2707-2712 doi: 10.5194/angeo-23-2707-2005 [17] DUNLOP M W, ESCOUBET C P, LIU Z X, et al. Double star: mission, instruments and joint observations[M]//LAAKSO H, TAYLOR M, ESCOUBET C P. The Cluster Active Archive. Dordrecht: Springer, 2010: 331-346 [18] CAO J B, LIU Z X, YAN C X, et al. First results of Chinese particle instruments in the Double Star program[J]. Annales Geophysicae, 2005, 23(8): 2775-2784 doi: 10.5194/angeo-23-2775-2005 [19] LIU Zhenxing. Geospace Double Star exploration project[J]. Chinese Journal of Geophysics, 2001, 44(4): 573-580 doi: 10.3321/j.issn:0001-5733.2001.04.016 [20] OUYANG Z Y, LI C L, ZOU Y L, et al. Chang’E-1 lunar mission: an overview and primary science results[J]. Chinese Journal of Space Science, 2010, 30(5): 392-403,391 [21] WANG Xinyue, JING Tao, ZHANG Shenyi, et al. The first results of Chang’E-1 high energetic particles detector[J]. Progress in Geophysics, 2012, 27(6): 2289-2295 doi: 10.6038/j.issn.1004-2903.2012.06.003 [22] WANG Chi, ZHANG Xianguo, XU Xinfeng, et al. The lunar and deep space environment exploration in China[J]. Journal of Deep Space Exploration, 2019, 6(2): 105-118 [23] WANG Xinyue, ZHANG Aibing, JING Tao, et al. The lunar charged particle environment by Chang’E-1 and Chang’E-2[J]. Journal of Deep Space Exploration, 2019, 6(2): 119-126 [24] LI C L, ZUO W, WEN W B, et al. Overview of the Chang’E-4 mission: opening the frontier of scientific exploration of the lunar far side[J]. Space Science Reviews, 2021, 217(2): 35 doi: 10.1007/s11214-021-00793-z [25] JIA Y Z, ZOU Y L, PING J S, et al. The scientific objectives and payloads of Chang’E-4 mission[J]. Planetary and Space Science, 2018, 162: 207-215 doi: 10.1016/j.pss.2018.02.011 [26] YE Peijian, SUN Zezhou, ZHANG He, et al. Mission design of Chang’E-4 probe system[J]. Scientia Sinica:Technologica, 2019, 49(2): 124-137 doi: 10.1360/N092018-00400 [27] ZHANG Shenyi, HOU Donghui, WIMMER-SCHWEINGRUBER R F, et al. Radiation dose of LND on the lunar surface in two years[J]. Chinese Journal of Space Science, 2021, 41(3): 439-444 doi: 10.11728/cjss2021.03.439 -