留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于深空探测的400 MHz带宽Chirp变换谱分析仪的设计与实现

茹鹏磊 刘梦伟 宫俊杰 王文 朱皓天 朱迪 董晓龙

茹鹏磊, 刘梦伟, 宫俊杰, 王文, 朱皓天, 朱迪, 董晓龙. 用于深空探测的400 MHz带宽Chirp变换谱分析仪的设计与实现[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210611071
引用本文: 茹鹏磊, 刘梦伟, 宫俊杰, 王文, 朱皓天, 朱迪, 董晓龙. 用于深空探测的400 MHz带宽Chirp变换谱分析仪的设计与实现[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210611071
RU Penglei, LIU Mengwei, GONG Junjie, WANG Wen, ZHU Haotian, ZHU Di, DONG Xiaolong. High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210611071
Citation: RU Penglei, LIU Mengwei, GONG Junjie, WANG Wen, ZHU Haotian, ZHU Di, DONG Xiaolong. High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210611071

用于深空探测的400 MHz带宽Chirp变换谱分析仪的设计与实现

doi: 10.11728/cjss2022.05.210611071
基金项目: 自然科学基金项目资助(U1837209)
详细信息
    作者简介:

    刘梦伟:E-mail:liumw@mail.ioa.ac.cn

High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration

  • 摘要: Chirp变换频谱仪(CTS)具有低功耗、高稳定性等优点,在深空探测领域中具有独特的优势。罗塞塔(Rosetta)彗星探测器搭载的180 MHz带宽Chirp变换频谱分析仪,是迄今为止唯一成功完成空间任务的后端外差式实时频谱分析仪。基于Chirp变换谱分析的原理,设计搭建了数字展宽线技术与声表面波压缩线技术相结合的400 MHz带宽Chirp变换谱分析仪。完成了数字展宽线与模拟声表面波压缩线的优化匹配设计,使系统的分辨率达到了理论值100 kHz。进一步采用调频信号和多频率点信号对CTS系统进行了测试验证。

     

  • 图  1  Chirp变换谱分析原理

    Figure  1.  Chirp transform spectrum analysis principle diagram

    图  2  Chirp变换谱分析仪系统双分支电路结构

    Figure  2.  Chirp transform spectrum analyzer system double branch circuit structure diagram

    图  3  SAW线性调频信号发生器性能参数。(a)相频特性,(b)带内相位均方根误差,(c)频率-时间特性,(d)幅频特性

    Figure  3.  SAW chirp signal generator performance parameters. (a) Phase-frequency characteristics, (b) in-band phase root mean square error, (c) frequency-time characteristics, (d) amplitude-frequency characteristics

    图  4  展宽线与压缩线初始相位差$ \mathrm{\theta } $为典型值时系统压缩结果仿真

    Figure  4.  Initial phase difference between the Expander and the compressor is $ \mathrm{\theta } $, and the system compression result simulation diagram

    图  5  在一固定输入频率下对随机初始相位的被测信号100次理想仿真结果的叠加

    Figure  5.  Under a constant input frequency, the superposition of 100 ideal simulation results of the measured signal with random initial phase

    图  6  主瓣的–4 dB宽和峰值旁瓣比(PSLR)

    Figure  6.  –4 dB width of the main lobe and the peak side lobe ratio

    图  7  2 GHz被测信号输入的系统压缩结果

    Figure  7.  System compression result of 2 GHz measured signal input

    图  8  展宽线色散斜率不同取值下,系统压缩结果中主瓣宽度和峰值旁瓣比(PSLR)的测量结果

    Figure  8.  Measurements of the main lobe width and Peak Side Lobe Ratio (PSLR) in the system compression results for different values of the dispersion slope of the expander

    图  9  展宽线色散斜率为一些典型值时系统在2 GHz输入信号下的压缩结果

    Figure  9.  Compression result of the system at 2 GHz when the dispersion slope of the expander is of some typical value

    图  10  在400 MHz带宽内,以50 MHz为测量间隔的测试系统最优色散斜率

    Figure  10.  Tested optimal dispersion slope of the system in the 400 MHz bandwidth with 50 MHz as the measurement interval

    图  11  在最优匹配色散斜率下(K=39.945 MHz·μs–1)系统在1.8~2.2 GHz频带内的峰值旁瓣比(PSLR)和主瓣宽度的变化趋势

    Figure  11.  Peak Side Lobe Ratio (PSLR) and main lobe width of the system in the 1.8 GHz to 2.2 GHz frequency band under the best matched dispersion slope (K=39.945 MHz·μs–1)

    图  12  展宽线色散斜率为39.945 MHz·μs–1时系统在不同频点的压缩结果

    Figure  12.  Compression results of the system at different frequency points when the chirp rate of the expander is 39.945 MHz·μs–1

    图  13  两输入信号频率相差100 kHz相位差($ \Delta \mathrm{\theta } $)不同时系统的压缩结果

    Figure  13.  When the frequency difference between the two input signals is 100 kHz and the phase difference is different,

    图  14  CTS系统分辨率测试

    Figure  14.  CTS system resolution test chart

    图  15  系统分辨率测试结果

    Figure  15.  System resolution test result

    图  16  调频信号经过Chirp变换谱分析仪系统后的压缩结果

    Figure  16.  Compression result of FM signal after Chirp transform spectrum analyzer system

    图  17  多频率点信号经过CTS系统后的压缩结果

    Figure  17.  Compression result diagram of multi-frequency signal after CTS system

    表  1  不同频段的频率偏差

    Table  1.   Frequency deviation of different frequency bands

    被测信号频率f/GHz与1.8 GHz被测信号压缩脉冲的
    时间间隔 (理想)T/μs
    与1.8 GHz被测信号压缩脉冲的
    时间间隔T/μs
    频率偏差δ/kHz
    1.92.52.50280
    2.05.05.00280
    2.17.57.504160
    2.210.010.01400
    下载: 导出CSV
  • [1] HARTOGH P. Present and future chirp transform spectrometers for microwave remote sensing[C]//Proceedings of SPIE 3221, Sensors, Systems, and Next-Generation Satellites. London: SPIE, 1997: 328-339
    [2] VILLANUEVA G, HARTOGH P. The high resolution chirp transform spectrometer for the Sofia-great instrument[J]. Experimental Astronomy, 2004, 18(1/2/3): 77-91
    [3] 范江涛, 马冠一, 万庆涛, 等. Chirp信号在天文观测中的应用[J]. 天文研究与技术, 2017, 14(4): 443-451 doi: 10.14005/j.cnki.issn1672-7673.20170921.003

    FAN Jiangtao, MA Guanyi, WAN Qingtao, et al. Application of chirp signal in astronomical observation[J]. Astronomical Research and Technology, 2017, 14(4): 443-451 doi: 10.14005/j.cnki.issn1672-7673.20170921.003
    [4] GULKIS S, FRERKING M, CROVISIER J, et al. MIRO: microwave instrument for Rosetta orbiter[J]. Space Science Reviews, 2007, 128(1/2/3/4): 561-597
    [5] HARTOGH P, BARABASH S, BEAUDIN G, et al. The submillimeter wave instrument on JUICE[C]//Proceedings of European Planetary Science Congress 2013. London: EPSC, 2013
    [6] KOTIRANTA M, BEAUDIN K, LIM H, et al. Optical design and analysis of the submillimeter-wave instrument on JUICE[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6): 588-595 doi: 10.1109/TTHZ.2018.2866116
    [7] 郑兴武, 加尔肯, 周建军. 乌鲁木齐25 m射电望远镜首次水脉泽观测[J]. 中国科学(A辑), 2001, 44(10): 1356-1360 doi: 10.1007/BF02877025

    ZHENG Xingwu, ESIMBEK J, ZHOU Jianjun. First observations of the water masers with the Urumqi 25 m radio telescope[J]. Science in China Series A: Mathematics, 2001, 44(10): 1356-1360 doi: 10.1007/BF02877025
    [8] 张晋, 王娜, 艾力·伊, 等. 乌鲁木齐25 m射电望远镜的单天线观测研究[J]. 天文学进展, 2000, 18(4): 271-282 doi: 10.3969/j.issn.1000-8349.2000.04.001

    ZHANG Jin, WANG Na, ALI·Y, et al. Single dish astrophysics observations at Urumqi astronomical observatory[J]. Progress in Astronomy, 2000, 18(4): 271-282 doi: 10.3969/j.issn.1000-8349.2000.04.001
    [9] 贺小琦, 董晓龙, 朱迪, 等. 一种用于深空探测的宽带低功耗频谱仪的设计与试验[J]. 电子设计工程, 2019, 27(3): 178-183,188 doi: 10.3969/j.issn.1674-6236.2019.03.039

    HE Xiaoqi, DONG Xiaolong, ZHU Di, et al. Design and test of a low power consumption boardband spectrometer for deep space explorations[J]. Electronic Design Engineering, 2019, 27(3): 178-183,188 doi: 10.3969/j.issn.1674-6236.2019.03.039
    [10] 王业欢. 用于深空探测的Chirp变换频谱仪关键技术研究[D]. 北京: 中国科学院大学, 2020

    WANG Yehuan. Technologies of Chirp Transform Spectrometer for Deep Space Exploration[D]. Beijing: University of Chinese Academy of Sciences, 2020
    [11] 陈东培, 宫俊杰, 周献文, 等. 实用声表面波线性调频变换功率谱仪设计与分析的一些问题[J]. 声学学报, 1991(2): 81-90 doi: 10.15949/j.cnki.0371-0025.1991.02.001

    CHEN Dongpei, GONG Junjie, ZHOU Xianwen, et al. Problems in design and analysis of practical SAW CZT spectrometer[J]. Acta Acustica, 1991(2): 81-90 doi: 10.15949/j.cnki.0371-0025.1991.02.001
    [12] DING Lufei, GENG Fulu, CHEN Jianchun. Radar Principles(5 th ed) [M]. Beijing: Publishing House of Electronics Industry, 2014
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 录用日期:  2021-09-22
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回