留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多仪器观测的中国中纬区域MSTID长距离传播事件研究

罗吉 徐寄遥 吴坤 袁伟 王玮 张佼佼

罗吉, 徐寄遥, 吴坤, 袁伟, 王玮, 张佼佼. 基于多仪器观测的中国中纬区域MSTID长距离传播事件研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210722080
引用本文: 罗吉, 徐寄遥, 吴坤, 袁伟, 王玮, 张佼佼. 基于多仪器观测的中国中纬区域MSTID长距离传播事件研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210722080
LUO Ji, XU Jiyao, WU Kun, YUAN Wei, WANG Wei, ZHANG Jiaojiao. Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210722080
Citation: LUO Ji, XU Jiyao, WU Kun, YUAN Wei, WANG Wei, ZHANG Jiaojiao. Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210722080

基于多仪器观测的中国中纬区域MSTID长距离传播事件研究

doi: 10.11728/cjss2022.05.210722080
基金项目: 国家自然科学基金项目资助(41831073, 42004138)
详细信息
    作者简介:

    徐寄遥:E-mail:jyxu@spaceweather.ac.cn

  • 中图分类号: P352

Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China

  • 摘要: 电离层等离子体不规则结构通常会影响星地卫星的通信、导航及定位等,因此研究不规则体的结构特征和演化过程具有非常重要的科学意义和应用价值。中尺度电离层行进式扰动(MSTID)是一种常发于F层的电离层扰动,其演化过程十分复杂。本文利用伊春和兴隆台站全天空气辉成像仪、Swarm卫星、佳木斯高频雷达以及漠河和十三陵台站数字测高仪观测数据,对2018年10月17日夜间出现在中国东北区域上空的MSTID事件进行分析研究。该MSTID事件传播时间较长,在气辉观测中持续时间超过4 h(12:02-16:23 UT),其波长范围为176.3~322.5 km,波速范围为67.0~154.1 m·s–1。研究结果显示,该MSTIDs可能产生于较高的纬度,自东北向西南往中纬传播,依次经过伊春、兴隆台站的气辉观测区域。

     

  • 图  1  观测仪器及台站位置。红色星形代表兴隆台站全天空气辉成像仪位置(40.4°N,117.6°E),蓝色菱形代表伊春台站全天空气辉成像仪位置(47.9°N,128.9°E),黑色圆点代表佳木斯台站高频雷达位置(46.8°N,130.5°E),棕色三角形代表漠河台站数字测高仪位置(53.5°N,122.4°E)

    Figure  1.  Location of observation instruments and stations. The red star denotes the geographic location of the all-sky imager at Xinglong (40.4°N, 117.6°E), the blue diamond denotes the geographic location of the all-sky imager at Yichun (47.9°N,128.9°E). The black spot denotes the geographic location of the High-frequency radar at Jiamusi (46.8°N,130.5°E). The brown triangle denotes the geographic location of the Digisonde at Mohe (53.5°N,122.4°E)

    图  2  2018年10月17日晚 12:02-16:23 UT河北兴隆和黑龙江伊春台站观测到的气辉图像(相邻两图之间的时间间隔约为15 min)

    Figure  2.  Images of MSTIDs from the Xinglong and Yichun station from 12:02 to 16:23 UT on 17 October 2018 (time interval between successive images is about 15 min)

    图  3  (a)上图为全天空气辉成像仪和Swarm A,C卫星在2018年10月17日13:00-13:08 UT同时观测到的MSTID事件,红线代表A卫星轨道,蓝线代表C卫星轨道。下图为Swarm A,C卫星观测到的电子密度变化图; (b)上图为全天空气辉成像仪和Swarm C卫星在14:32-14:38 UT观测到的MSTID事件,下图为Swarm C卫星观测到的电子密度变化;(c)观测期间不同纬度的电子密度梯度

    Figure  3.  (a) Top figure denotes the orbits of Swarm A, C added to the airglow image observed from 13:00 to 13:08 UT on 17 October 2018, the red line indicates the orbit arc of Swarm A, the blue line indicates the orbit arc of Swarm C. Bottom figure denotes the time series of in situ electron density data from Swarm satellites. (b) The orbit arc of Swarm C (top figure) and the time series of in situ electron density data from Swarm C (bottom figure). (c) The latitude series of in situ electron density gradient from Swarm satellites

    图  4  2018年10月17日12:00-18:00 UT 佳木斯雷达第13波束所观测到的雷达数据

    Figure  4.  Time series plots of measurements from beam 13 of the Jiamusi radar obtained from 12:00 to 18:00 UT on 17 October 2018

    图  5  (a)2018年10月17日14:36 UT伊春台站气辉观测结果;(b)佳木斯雷达在14:35 UT所测量的视线多普勒速度;(c)佳木斯雷达在14:35 UT所测量的回波强度;(d)15:04 UT气辉观测结果;(e)佳木斯雷达在15:05 UT所测量的视线多普勒速度;(f)佳木斯雷达在15:05 UT所测量的回波强度。红框和蓝框分别代表兴隆和伊春台站全天空气辉成像仪的观测视野

    Figure  5.  (a) Airglow observations of Yichun at 14:36 UT on 17 October 2018, (b) the Doppler velocity observed by the Jiamusi radar at 14:35 UT, (c) the echo power observed by the Jiamusi radar at 14:35 UT, (d) airglow observations of Yichun at 15:04 UT,(e) the Doppler velocity at 15:05 UT, (f) the echo power at 15:05 UT. the red and blue squares denote the field of view of the all-sky imagers at 250 km at Xinglong and Yichun

    图  6  黑龙江漠河数字测高仪观测的2018年10月17日08:00 UT至次日00:00 UT 每30 min的电离层频高图

    Figure  6.  Ionograms observed by the Digisonde at Heilongjiang Mohe station every 30 min between 08:00 to 00:00 UT on 17-18 October 2018

    图  7  北京十三陵数字测高仪观测的2018年10月17日10:00-23:30 UT每30 min的电离层频高图

    Figure  7.  Ionograms observed by the Digisonde at Beijing Shisangling station every 30 min between 10:00 to 23:30 UT on 17 October 2018

  • [1] HUNSUCKER R D. Atmospheric gravity waves generated in the high-latitude ionosphere: a review[J]. Reviews of Geophysics, 1982, 20(2): 293-315 doi: 10.1029/RG020i002p00293
    [2] CANDIDO C M N, PIMENTA A A, BITTENCOURT J A, et al. Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using oi 630.0 nm emission all-sky images[J]. Geophysical Research Letters, 2008, 35(17): L17105 doi: 10.1029/2008GL035043
    [3] 万卫星, 徐寄遥. 中国高层大气与电离层耦合研究进展[J]. 中国科学:地球科学, 2014, 57(9): 1995-2012 doi: 10.1007/s11430-014-4923-3

    WAN Weixing, XU Jiyao. Recent investigation on the coupling between the ionosphere and upper atmosphere[J]. Science China Earth Sciences, 2014, 57(9): 1995-2012 doi: 10.1007/s11430-014-4923-3
    [4] XU J Y, LI Q Z, SUN L C, et al. The ground‐based airglow imager network in China[M]//Upper Atmosphere Dynamics and Energetics. Hoboken: American Geophysical Union, 2021
    [5] KOTAKE N, OTSUKA Y, TSUGAWA T, et al. Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A4): A04306
    [6] KUTIEV I, MARINOV P, FIDANOVA S, et al. Modeling medium-scale TEC structures, observed by Belgian GPS receivers network[J]. Advances in Space Research, 2009, 43(11): 1732-1739 doi: 10.1016/j.asr.2008.07.021
    [7] XIAO S G, XIAO Z, SHI J K, et al. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A1): A01303
    [8] PARK J, LÜHR H, MIN K W, et al. Plasma density undulations in the nighttime mid-latitude F-region as observed by CHAMP, KOMPSAT-1, and DMSP F15[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(2/3): 183-192
    [9] KATAMZI Z T, SMITH N D, MITCHELL C N, et al. Statistical analysis of travelling ionospheric disturbances using TEC observations from geostationary satellites[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74: 64-80 doi: 10.1016/j.jastp.2011.10.006
    [10] NARAYANAN V L, SHIOKAWA K, OTSUKA Y, et al. Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: statistical characteristics and low-latitude limit[J]. Journal of Geophysical Research: Space Physics, 2014, 119(11): 9268-9282 doi: 10.1002/2014JA020368
    [11] MENDILLO M, BAUMGARDNER J, NOTTINGHAM D, et al. Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo observatory[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A4): 7331-7343 doi: 10.1029/96JA02786
    [12] KUBOTA M, SHIOKAWA K, EJIRI M K, et al. Traveling ionospheric disturbances observed in the OI 630-nm nightglow images over Japan by using a multipoint imager network during the FRONT campaign[J]. Geophysical Research Letters, 2000, 27(24): 4037-4040 doi: 10.1029/2000GL011858
    [13] GARCIA F J, KELLEY M C, MAKELA J J, et al. Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18407-18415 doi: 10.1029/1999JA000305
    [14] KELLEY M C, GARCIA F, MAKELA J, et al. Highly structured tropical airglow and TEC signatures during strong geomagnetic activity[J]. Geophysical Research Letters, 2000, 27(4): 465-468 doi: 10.1029/1999GL900598
    [15] SHIOKAWA K. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A1): 1052 doi: 10.1029/2002JA009491
    [16] OTSUKA Y. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers[J]. Geophysical Research Letters, 2004, 31(15): L15803 doi: 10.1029/2004GL020262
    [17] OGAWA T, NISHITANI N, OTSUKA Y, et al. Medium‐scale traveling ionospheric disturbances observed with the superDARN Hokkaido radar, all‐sky imager, and GPS network and their relation to concurrent sporadic E irregularities[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03316
    [18] DING F, WAN W X, XU G R, et al. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A9): A09327
    [19] 宋茜, 丁锋, 万卫星, 等. 北美地区夜间中尺度电离层行进式扰动的GPS台网监测研究[J]. 地球物理学报, 2011, 54(4): 935-941 doi: 10.3969/j.issn.0001-5733.2011.04.007

    SONG Qian, DING Feng, WAN Weixing, et al. Monitoring nighttime medium-scale traveling ionospheric disturbances using the GPS network over North America[J]. Chinese Journal of Geophysics, 2011, 54(4): 935-941 doi: 10.3969/j.issn.0001-5733.2011.04.007
    [20] SUN L C, XU J Y, WANG W B, et al. Mesoscale field‐aligned irregularity structures (FAIs) of airglow associated with medium‐scale traveling ionospheric disturbances (MSTIDs)[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 9839-9858 doi: 10.1002/2014JA020944
    [21] XIE H Y, LI G Z, ZHAO X K, et al. Coupling between E region quasi-periodic echoes and F region medium-scale traveling ionospheric disturbances at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027720
    [22] WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium-scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723
    [23] LUO J, XU J Y, WU K, et al. The influence of ionospheric neutral wind variations on the morphology and propagation of medium scale traveling ionospheric disturbances on 8 th August 2016[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029037
    [24] ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7(1): e2019EA000911
    [25] GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385 doi: 10.1364/AO.36.007374
    [26] EMMA C B, ANDREW J M, SEBASTIEN D L, et al. Determination of ionospheric parameters in real time using SuperDARN HF Radars[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 5830-5846 doi: 10.1002/2014JA020076
    [27] HALDOUPIS C, FARLEY D T, SCHLEGEL K. Type-1 echoes from the mid-latitude E-Region ionosphere[J]. Annales Geophysicae, 1997, 15(7): 908-917
    [28] TSUNODA R T, COSGROVE R B. Coupled electrodynamics in the nighttime midlatitude ionosphere[J]. Geophysical Research Letters, 2001, 28(22): 4171-4174 doi: 10.1029/2001GL013245
    [29] YOKOYAMA T, HYSELL D L, OTSUKA Y, et al. Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03308
  • 加载中
图(7)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 录用日期:  2021-11-11
  • 修回日期:  2022-03-14
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回