留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气电场综合观测设备的设计

李磊 苏建峰 陈涛 李文 王诗涵 提烁 罗静 孙海龙 董伟 吴伟

李磊, 苏建峰, 陈涛, 李文, 王诗涵, 提烁, 罗静, 孙海龙, 董伟, 吴伟. 大气电场综合观测设备的设计[J]. 空间科学学报, 2022, 42(5): 933-940. doi: 10.11728/cjss2022.05.210824090
引用本文: 李磊, 苏建峰, 陈涛, 李文, 王诗涵, 提烁, 罗静, 孙海龙, 董伟, 吴伟. 大气电场综合观测设备的设计[J]. 空间科学学报, 2022, 42(5): 933-940. doi: 10.11728/cjss2022.05.210824090
LI Lei, SU Jianfeng, CHEN Tao, LI Wen, WANG Shihan, TI Shuo, LUO Jing, SUN Hailong, DONG Wei, WU Wei. Design of a Comprehensive Observation Equipment for Atmospheric Electric Field (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 933-940 doi: 10.11728/cjss2022.05.210824090
Citation: LI Lei, SU Jianfeng, CHEN Tao, LI Wen, WANG Shihan, TI Shuo, LUO Jing, SUN Hailong, DONG Wei, WU Wei. Design of a Comprehensive Observation Equipment for Atmospheric Electric Field (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 933-940 doi: 10.11728/cjss2022.05.210824090

大气电场综合观测设备的设计

doi: 10.11728/cjss2022.05.210824090
基金项目: 中国科学院战略性先导科技专项(XDA17010301, XDA17040505, XDA15052500, XDA15350201),国家自然科学基金项目(41874175, 41931073),国家重点实验室专项基金项目和中国科学院国家空间科学中心重点培育方向、空间中心攀登计划主任基金(E0 PD41 A11 S),国家重大科技基础设施子午工程项目和云南省基础研究青年项目(2019 FD111)共同资助
详细信息
    作者简介:

    李磊:E-mail:lilei@swl.ac.cn

    通讯作者:

    苏建峰,E-mail:sujf@nssc.ac.cn

    陈涛,E-mail:tchen@nssc.cn

  • 中图分类号: P352

Design of a Comprehensive Observation Equipment for Atmospheric Electric Field

  • 摘要: 大气电场反映了地球近地表大气对气象活动、太阳活动与地质活动的综合响应。实现大气电场与气象参数及地磁活动指数等参数的综合测量,对雷电活动、地质灾害和磁暴活动等的研究具有重要意义。 设计开发了一种大气电场综合观测设备,能够同时测量包含温度、相对湿度、风速和大气电场等多个参数,在大气电场探测原理的基础上给出了大气电场综合观测设备的详细设计和电场标定过程。 通过对该设备在北京市十三陵台站实测数据的分析,与中国科学院国家空间科学中心FAMEMS-DF02电场仪以及中国气象网发布的气象数据进行对比,结果表明各气象参数99%的时刻对应误差不超过±10%,平均误差不超过±3%,而电场数据的平均误差为±0.166 kV·m–1

     

  • 图  1  大气电场综合观测设备

    Figure  1.  Comprehensive observation equipment for atmospheric electric field

    图  2  场磨式电场探头构造

    Figure  2.  Field mill type electric field detector structure

    图  3  大气电场综合观测设备功能模块

    Figure  3.  Functional modules of the comprehensive observation equipment for atmospheric electric field

    图  4  电场标定系统

    Figure  4.  Electric field calibration system

    图  5  综合设备中电场探头的标定曲线

    Figure  5.  Calibration curve of the electric field detector in the integrated device

    图  6  2021年8月14-18日大气电场综合观测设备在昌平区十三陵台站的观测曲线

    Figure  6.  Observation curve of the atmospheric electric field comprehensive observation equipment at Shisanling Station in Changping District from 14 to 18 in August 2021

    图  7  2021年8月14-18日昌平区十三陵台站的大气电场综合观测设备与中国气象数据网的观测对比曲线

    Figure  7.  Comparison curves of observations from 14 to 18 August 2021 at the Shisanling Station in Changping District for the integrated atmospheric electric field observation equipment and the Chinese meteorological data network

    图  8  大气电场综合观测设备与FAMEMS-DF02电场仪观测数据对比

    Figure  8.  Comparison curve between the atmospheric electric field comprehensive observation equipment and FAMEMS-DF02 electric field meter

    表  1  综合探测仪接收到的数据格式

    Table  1.   Format of the data received by the integrated instrument

    设备编号设备型号通信序列号物联网卡序列号信号强度版本号
    BA900000000常规款86870404521683346004238290757420Ver1.0
    通信用时/s采集状态温度/℃湿度/(%)电场/(kV·m–1风速/(m·s–1风级日期时刻(LT)
    1正常20990.05002021-08-1400:00:01
    下载: 导出CSV
  • [1] 黄钰, 吴安坤, 张淑霞. 场地环境对大气电场测量的影响及修正[J]. 电子测量技术, 2018, 41(1): 35-38 doi: 10.19651/j.cnki.emt.1701072

    HUANG Yu, WU Ankun, ZHANG Shuxia. Influence of environmental features on the atmospheric electric field and correction[J]. Electronic Measurement Technology, 2018, 41(1): 35-38 doi: 10.19651/j.cnki.emt.1701072
    [2] GURMANI S F, AHMAD N, TACZA J, et al. First seasonal and annual variations of atmospheric electric field at a subtropical station in Islamabad, Pakistan[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179: 441-449 doi: 10.1016/j.jastp.2018.09.011
    [3] 周筠珺, 陈成品, 刘黎平, 等. 青藏高原那曲地区冰雹天气系统中的大气电场[J]. 高原气象, 2000, 19(3): 339-347 doi: 10.3321/j.issn:1000-0534.2000.03.009

    ZHOU Yunjun, CHEN Chengpin, LIU Liping, et al. The characteristics of electric field of hailstorm weather in Nagqu area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2000, 19(3): 339-347 doi: 10.3321/j.issn:1000-0534.2000.03.009
    [4] 张义军, 葛正谟, 陈成品, 等. 青藏高原东部地区的大气电特征[J]. 高原气象, 1998, 17(2): 135-141 doi: 10.3321/j.issn:1000-0534.1998.02.004

    ZHANG Yijun, GE Zhengmo, CHEN Chengpin, et al. Electrical characteristics of atmosphere in east area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 1998, 17(2): 135-141 doi: 10.3321/j.issn:1000-0534.1998.02.004
    [5] 言穆弘, 肖庆复, 申巧南. 1988年9—11月西太平洋海区大气电场特征分析[J]. 高原气象, 1990, 9(4): 395-404

    YAN Muhong, XIAO Qingfu, SHEN Qiaonan. Characteristics of atmospheric electric field at the west pacific region in Sep.-Nov., 1988[J]. Plateau Meteorology, 1990, 9(4): 395-404
    [6] 卢炳源. 大气电场数据在雷电预警中的应用研究[D]. 成都: 电子科技大学, 2012

    LU Bingyuan. The Research on the Application of the Data of Atmospheric Electric Field in Lightning Warning[D]. Chengdu: University of Electronic Science and Technology of China, 2012
    [7] 张华明, 张义军, 杨世刚, 等. 太原地区大气电场及其与大气污染物关系[J]. 环境科学与技术, 2013, 36(9): 66-69 doi: 10.3969/j.issn.1003-6504.2013.09.014

    ZHANG Huaming, ZHANG Yijun, YANG Shigang, et al. Characteristics of atmospheric electric field in Taiyuan and its relationship with atmospheric pollutants[J]. Journal of Environmental Sciences, 2013, 36(9): 66-69 doi: 10.3969/j.issn.1003-6504.2013.09.014
    [8] 马启明. 雷电监测原理与技术[M]. 北京: 科学出版社, 2015: 3-5

    MA Qiming. Principle and Technology of Lightning Monitoring[M]. Beijing: Science Press, 2015: 3-5
    [9] 吴明江, 杜莉萍, 陈勇斌, 等. 大气电场的特征及雷电预警技术研究[J]. 气象水文海洋仪器, 2010, 27(1): 10-14 doi: 10.3969/j.issn.1006-009X.2010.01.003

    WU Mingjiang, DU Liping, CHEN Yongbin, et al. Study on the characteristics of atmospheric electric field and lightning warning[J]. Meteorological, Hydrological and Marine Instruments, 2010, 27(1): 10-14 doi: 10.3969/j.issn.1006-009X.2010.01.003
    [10] 吴晗, 陈涛, 李仁康, 等. 锡林浩特市火山地质公园平台山顶近地面大气电场变化特征[J]. 空间科学学报, 2020, 40(3): 357-363 doi: 10.11728/cjss2020.03.357

    WU Han, CHEN Tao, LI Renkang, et al. Characteristics of the near-surface atmospheric electric field over the top of a flat mountain in Xilin Hot Volcano Geopark[J]. Chinese Journal of Space Science, 2020, 40(3): 357-363 doi: 10.11728/cjss2020.03.357
    [11] IAROSSI S, POSCOLIERI M, RAFANELLI C, et al. The measure of atmospheric electric field[M]//NERI G, DONATO N, D'AMICO A, et al. Sensors and Microsystems. Dordrecht: Springer, 2011: 175-179.
    [12] BENNETT A J, HARRISON R G. Variability in surface atmospheric electric field measurements[J]. Journal of Physics:Conference Series, 2008, 142(1): 012046
    [13] TACZA J, RAULIN J P, MARUN A, et al. Variability of ground-based high altitude atmospheric electric field measurements[C]//Proceedings of the XVI International Conference on Atmospheric Electricity. Nara, 2018
    [14] SIDIK M A B, SHAHROOM H, BUNTAT Z, et al. Wireless online atmospheric electric field measurement system based on rotating-vane electric field mill[J]. Proceeding of the Electrical Engineering, Computer Science and Informatics, Yogyakarta, Indonesia, 20-21 August 2014, 1
    [15] ZHOU H L, DIENDORFER G, THOTTAPPILLIL R, et al. Fair-weather atmospheric electric field measurements at the Gaisberg mountain in Austria[C]//Piers Marrakesh Progress in Electromagnetics Research Symposium. Marrakesh, Morocco, Mar. 20–23, 2011: 1303-1307
    [16] 罗福山, 何渝晖, 张健, 等. 新型倒装式旋转电场仪[J]. 空间科学学报, 2004, 24(6): 470-474 doi: 10.3969/j.issn.0254-6124.2004.06.009

    LUO Fushan, HE Yuhui, ZHANG Jian, et al. The new inverted electric field mill[J]. Chinese Journal of Space Science, 2004, 24(6): 470-474 doi: 10.3969/j.issn.0254-6124.2004.06.009
    [17] 李中富. 基于FPGA数字式大气电场仪的设计[J]. 科技与创新, 2018(22): 136-137 doi: 10.15913/j.cnki.kjycx.2018.22.136

    LI Zhongfu. Design of digital atmospheric electric field instrument based on FPGA[J]. Science and Technology & Innovation, 2018(22): 136-137 doi: 10.15913/j.cnki.kjycx.2018.22.136
    [18] 林楚, 陈晓宁, 张海涛, 等. 空中三维大气电场定向测量系统设计[J/OL]. 解放军理工大学学报(自然科学版), 2021: 1-5(2017-11-23). http://kns.cnki.net/kcms/detail/32.1430.N.20171123.1546.002.html

    LIN Chu, CHEN Xiaoning, ZHANG Haitao, et al. Design of the air three-dimensional atmospheric electric field directional detection system[J/OL]. Journal of PLA University of Science and Technology (Natural Science Edition), 2021: 1-5(2017-11-23). http://kns.cnki.net/kcms/detail/32.1430.N.20171123.1546.002.html
    [19] ADZHIEV A H, KOROVIN E A, CHERNYSHEV S V, et al. An atmospheric electric field meter[J]. Instruments and Experimental Techniques, 2017, 60(5): 733-736 doi: 10.1134/S0020441217050013
    [20] CHOUDHURY A, GUHA A, DE B K, et al. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India[J]. Annals of Geophysics, 2013, 56(3): R0331 doi: 10.4401/ag-6235
    [21] SMIRNOV S. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity[J]. Natural Hazards and Earth System Sciences, 2008, 8(4): 745-749 doi: 10.5194/nhess-8-745-2008
    [22] 郝建国, 张云福. 地震静电预测学[M]. 东营: 石油大学出版社, 2001

    HAO Janguo, ZHANG Yunfu. Earthquake Static Electricity for the Prediction[M]. Dongying: Petroleum University Press, 2001
    [23] 陈涛, 张效信, 张学民, 等. 利用区域大气静电场监测网临震预估地震灾害[J]. 地球物理学报, 2021, 64(4): 1145-1154 doi: 10.6038/cjg2021O0129

    CHEN Tao, ZHANG Xiaoxin, ZHANG Xuemin, et al. Imminent estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field[J]. Chinese Journal of Geophysics, 2021, 64(4): 1145-1154 doi: 10.6038/cjg2021O0129
    [24] JIN X B, ZHANG L, BU J W, et al. Discussion on anomaly of atmospheric electrostatic field in Wenchuan Ms8.0 earthquake[J]. Journal of Electrostatics, 2020, 104: 103423 doi: 10.1016/j.elstat.2020.103423
    [25] CHEN T, LI L, ZHANG X X, et al. Near-epicenter weather conditions several hours before strong earthquakes (Ms ≥ 6)[J]. Natural Hazards, 2022, 110(1): 57-68 doi: 10.1007/s11069-021-04907-2
    [26] TROSHICHEV O A, FRANK-KAMENetSKY A, BURNS G, et al. The relationship between variations of the atmospheric electric field in the southern polar region and thunderstorm activity[J]. Advances in Space Research, 2004, 34(8): 1801-1805 doi: 10.1016/j.asr.2003.07.063
    [27] LIU C T, WILLIAMS E R, ZIPSER E J, et al. Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit[J]. Journal of the Atmospheric Sciences, 2010, 67(2): 309-323 doi: 10.1175/2009JAS3248.1
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  57
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2022-05-11
  • 修回日期:  2022-06-01
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回