留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态地球磁层的时空剖分编码

王慈枫 胡晓彦 邹自明 李云龙 白曦

王慈枫, 胡晓彦, 邹自明, 李云龙, 白曦. 动态地球磁层的时空剖分编码[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210825093
引用本文: 王慈枫, 胡晓彦, 邹自明, 李云龙, 白曦. 动态地球磁层的时空剖分编码[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210825093
WANG Cifeng, HU Xiaoyan, ZOU Ziming, LI Yunlong, BAI Xi. Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210825093
Citation: WANG Cifeng, HU Xiaoyan, ZOU Ziming, LI Yunlong, BAI Xi. Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210825093

动态地球磁层的时空剖分编码

doi: 10.11728/cjss2022.05.210825093
基金项目: 中国科学院“十四五”网络安全和信息化专项资助(WX145 XQ07-06)
详细信息
    作者简介:

    王慈枫:E-mail:wcf@nssc.ac.cn

    通讯作者:

    邹自明 Email:mzou@nssc.ac.cn

  • 中图分类号: P353

Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere

  • 摘要: 动态地球磁层时空剖分模型借鉴广泛应用于地学大数据的地球格网模型思想,实现了面向地球磁层的动态、非规则化物理空间的多层级剖分,且剖分格网形变稳定,可以实现一定范围内地球磁层时空特性的形式化。在此基础上,对剖分得到的时空格网进行编码表达,以便于计算机存储和处理,是构建地球磁层大规模观测数据统一管理基础时空框架的另一个关键问题。由于地球磁层特殊的时空特性,经典、单一思路的地学编码方案较难完整地反映格网间的时空关系,因此难以支持格网间的基础时空关系计算。本文融合了整数坐标编码与Morton曲线编码的基本思路,实现了对漂移壳剖分格网的高效编码方案设计,完成了动态地球磁层的时空框架构建,从而为地磁数据的高效组织和处理奠定了基础。实验证明,本文提出的编码方案编码效率较高,且可以支持高效的相邻关系计算,为动态地球磁层多源、多层级、异构的大规模观测数据的组织与计算提供了一种解决方案。

     

  • 图  1  偶极磁场区域$ L=\{1.5,2,2.5\} $的各漂移壳构造

    Figure  1.  Construction of the drift shells with $ L=\{1.5,2,2.5\} $ in the dipole field

    图  2  基于Galperin计算方法的磁力线构造方案

    Figure  2.  Construction of a field line of the drift shell based on the calculation of Galperin L

    图  3  非偶极磁场区域$ t=2015169 $$ L=\{\mathrm{6.5,7},7.5\} $的各漂移壳构造

    Figure  3.  Construction of the drift shells with $ t=2015169 $ and $ L=\left\{\mathrm{6.5,7},7.5\right\} $ in the non-dipole field

    图  4  $ L=1.5 $的漂移壳剖分

    Figure  4.  Subdivision of the drift shell with $ L=1.5 $

    图  5  非偶极磁场区域$ L=7.5 $$ t=2015169 $漂移壳剖分

    Figure  5.  Subdivision of the drift shell with $ \text{L}=7.5 $, $ t=2015169 $

    图  6  非偶极磁场区域漂移壳格网编码

    Figure  6.  Diagram of the DSGC for the grids in the non-dipole field

    表  1  集群环境

    Table  1.   Cluster environment

    硬件环境软件环境
    CPURAM(GB)HDD(GB)OSMatlab
    6核16512Windows 102018 a
    下载: 导出CSV

    表  2  偶极磁场区域编码效率

    Table  2.   Encoding efficiency in the dipole field

    $ N $编码效率$ {\eta }_{\mathrm{c}} $/(s–1
    Morton曲线编码整数坐标编码
    651003.0044678.60
    7127832.2125360.6
    8196152.1181619.7
    9204222.4193187.9
    10198420.7199054.0
    1196747.5496548.7
    12153574.2197650.5
    下载: 导出CSV

    表  3  非偶极磁场区域平均编码效率

    Table  3.   Mean encoding efficiency in the non-dipole field

    $ N $编码效率$ {\eta }_{\mathrm{c}} $/(s–1
    Morton编码整数坐标编码$ {\left(i{d}_{1}\left(N\right)\right)}_{2} $$ {\left(i{d}_{2}\left(N\right)\right)}_{2} $$ {\left(i{d}_{3}\left(N\right)\right)}_{2} $
    625451.5923660.0816319.3217338.2217739.12
    741171.3838646.5734454.5033378.9935573.91
    840192.7135873.3040000.4839031.2638787.78
    929902.7229887.5234048.5931543.2532049.48
    1019640.2620587.8321000.2621718.5221641.38
    1110946.5611460.0811741.8312218.1112243.30
    124930.945760.115042.204946.664896.83
    下载: 导出CSV

    表  4  剖分格网的基础相邻关系

    Table  4.   Basic adjacency of the grids

    邻居类型纬度维磁力线维经度维
    上邻居(T)$ {\left(i{d}_{T}^{\theta }\left(N\right)\right)}_{10}={\left(i{d}^{\theta }\left(N\right)\right)}_{10}+1 $$ {\left(i{d}_{T}^{\mathcal{F}}\left(N\right)\right)}_{10}={\left(i{d}^{\mathcal{F}}\left(N\right)\right)}_{10} $-
    下邻居(B)$ {\left(i{d}_{B}^{\theta }\left(N\right)\right)}_{10}={\left(i{d}^{\theta }\left(N\right)\right)}_{10}-1 $$ {\left(i{d}_{B}^{\mathcal{F}}\left(N\right)\right)}_{10}={\left(i{d}^{\mathcal{F}}\left(N\right)\right)}_{10} $-
    左邻居(L)$ {\left(i{d}_{L}^{\theta }\left(N\right)\right)}_{10}={\left(i{d}^{\theta }\left(N\right)\right)}_{10} $-$ {\left(i{d}_{L}^{\phi }\left({N}_{\phi }\right)\right)}_{10}=\left\{\begin{array}{c}{2}^{{N}_{\phi }}-1,if{\left(i{d}^{\phi }\left({N}_{\phi }\right)\right)}_{10}=0\\ {\left(i{d}^{\phi }\left({N}_{\phi }\right)\right)}_{10}-1,{\rm{otherwise}}\end{array}\right. $
    右邻居(R)$ {\left(i{d}_{R}^{\theta }\left(N\right)\right)}_{10}={\left(i{d}^{\theta }\left(N\right)\right)}_{10} $-$ {\left(i{d}_{R}^{\phi }\left({N}_{\phi }\right)\right)}_{10}=\left\{\begin{array}{c}0,if{\left(i{d}^{\phi }\left({N}_{\phi }\right)\right)}_{10}={2}^{{N}_{\phi }}-1\\ {\left(i{d}^{\phi }\left({N}_{\phi }\right)\right)}_{10}+1,{\rm{otherwise}}\end{array}\right. $
    下载: 导出CSV

    表  5  偶极磁场区域格网基础相邻关系计算效率对比

    Table  5.   Efficiency comparison of the basic adjacency of the grids in the dipole field

    平均计算效率$ \stackrel{-}{{\eta }_{s}} $ /(s–1TBLRTLTRBLBR
    Morton曲线编码118884.9114516.1122907.5119481.5126159.1124904.8121647.1126411.1
    整数坐标编码140970.2139378.6133924.4130746.3131747.1128346.6130744.6129471.6
    下载: 导出CSV

    表  6  非偶极磁场区域格网基础相邻关系计算效率对比

    Table  6.   Efficiency comparison of the basic adjacency of the grids in the non-dipole field

    平均计算效率$ \stackrel{-}{{\eta }_{s}} $/(s–1TBLRTLTRBLBR
    $ {\left(i{d}_{1}\left(N\right)\right)}_{2} $45.27329.3918.7768.7763.1423.2393.4343.326
    $ {\left(i{d}_{2}\left(N\right)\right)}_{2} $23.41122.7758.3106.1492.6362.6102.8092.161
    $ {\left(i{d}_{3}\left(N\right)\right)}_{2} $89.41289.71190.15689.36389.27690.35189.53089.731
    下载: 导出CSV
  • [1] KING T, THIEMAN J, ROBERTS A D. SPASE 2.0: a standard data model for space physics[J]. Earth Science Informatics, 2010, 3(1/2): 67-73
    [2] 徐文耀. 地磁与空间物理资料的组织和相关坐标系[J]. 地球物理学进展, 2006, 21(4): 1043-1060 doi: 10.3969/j.issn.1004-2903.2006.04.002

    XU Wenyao. Data organization in geomagnetism and space physics and relevant coordinate systems[J]. Progress in Geophysics, 2006, 21(4): 1043-1060 doi: 10.3969/j.issn.1004-2903.2006.04.002
    [3] 李志强, 程承旗, 李爽. 基于GeoSOT-3D的空间对象快速可视化与实验分析[J]. 地球信息科学学报, 2015, 17(7): 810-815

    LI Zhiqiang, CHENG Chengqi, LI Shuang. Research on spatial objects fast visualization based on GeoSOT-3D[J]. Journal of Geo-Information Science, 2015, 17(7): 810-815
    [4] 吴立新, 余接情. 基于球体退化八叉树的全球三维网格与变形特征[J]. 地理与地理信息科学, 2009, 25(1): 1-4

    WU Lixin, YU Jieqing. Global 3D-grid based on sphere degenerated octree and its distortion features[J]. Geography and Geo-Information Science, 2009, 25(1): 1-4
    [5] 康栋贺, 邹自明, 胡晓彦, 等. 支持时空耦合计算的HTM-ST日地空间系统数据组织模型[J]. 地球信息科学学报, 2017, 19(6): 735-743 doi: 10.3969/j.issn.1560-8999.2017.06.002

    KANG Donghe, ZOU Ziming, HU Xiaoyan, et al. HTM-ST: A data model supporting spatio-temporal coupled computation for solar-terrestrial system[J]. Journal of Geo-Information Science, 2017, 19(6): 735-743 doi: 10.3969/j.issn.1560-8999.2017.06.002
    [6] 赵学胜, 贲进, 孙文彬, 等. 地球剖分格网研究进展综述[J]. 测绘学报, 2016, 45(S1): 1-14 doi: 10.11947/j.AGCS.2016.F001

    ZHAO Xuesheng, BEN Jin, SUN Wenbin, et al. Overview of the research progress in the Earth tessellation grid[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S1): 1-14 doi: 10.11947/j.AGCS.2016.F001
    [7] 曹雪峰. 地球圈层空间网格理论与算法研究[D]. 郑州: 解放军信息工程大学, 2012

    CAO Xuefeng. Research on Earth sphere shell space grid theory and algorithms[D]. Zhengzhou: PLA Information Engineering University, 2012
    [8] MCILWAIN C E. Magnetic coordinates[J]. Space Science Reviews, 1966, 5(5): 585-598 doi: 10.1007/BF00167327
    [9] FUNG S F, TAN L C. An alternative drift shell parameter for modeling trapped particles[J]. Radiation Measurements, 1999, 30(5): 609-615 doi: 10.1016/S1350-4487(99)00243-7
    [10] 钟佳, 邹自明. 地磁偶极子场磁力线疏密可视化算法[J]. 地球物理学进展, 2014, 29(6): 2614-2619 doi: 10.6038/pg20140622

    ZHONG Jia, ZOU Ziming. The algorithm of density visualization of magnetic flux lines based on geo-magnetic dipole field[J]. Progress in Geophysics, 2014, 29(6): 2614-2619 doi: 10.6038/pg20140622
    [11] THÉBAULT E, FINLAY C C, BEGGAN C D, et al. International geomagnetic reference field: the 12 th generation[J]. Earth, Planets and Space, 2015, 67(1): 79 doi: 10.1186/s40623-015-0228-9
    [12] FORSYTHE G E. Numerical methods for high-speed computers: a survey[C]//Papers presented at the March 3-5, 1959, Western Joint Computer Conference. San Francisco: ACM, 1959
    [13] TSYGANENKO N A. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause[J]. Journal of Geophysical Research:Space Physics, 1995, 100(A4): 5599-5612 doi: 10.1029/94JA03193
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2021-11-11
  • 修回日期:  2022-03-13
  • 网络出版日期:  2022-09-19

目录

    /

    返回文章
    返回