留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钠激光雷达观测数据的中间层顶大气温度分布特性研究

郭商勇 胡雄 闫召爱 程永强 涂翠

郭商勇, 胡雄, 闫召爱, 程永强, 涂翠. 基于钠激光雷达观测数据的中间层顶大气温度分布特性研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210901096
引用本文: 郭商勇, 胡雄, 闫召爱, 程永强, 涂翠. 基于钠激光雷达观测数据的中间层顶大气温度分布特性研究[J]. 空间科学学报. doi: 10.11728/cjss2022.05.210901096
GUO Shangyong, HU Xiong, YAN Zhaoai, CHENG Yongqiang, TU Cui. Studies for Mesopause Temperature Distribution Characters Based On the Sodium Lidar Data (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210901096
Citation: GUO Shangyong, HU Xiong, YAN Zhaoai, CHENG Yongqiang, TU Cui. Studies for Mesopause Temperature Distribution Characters Based On the Sodium Lidar Data (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.210901096

基于钠激光雷达观测数据的中间层顶大气温度分布特性研究

doi: 10.11728/cjss2022.05.210901096
基金项目: 中国科学院战略性先导科技专项(XDA17010303)和国家自然科学基金项目(41905038)共同资助
详细信息
    作者简介:

    郭商勇:E-mail:guosy@nssc.ac.cn

  • 中图分类号: P356

Studies for Mesopause Temperature Distribution Characters Based On the Sodium Lidar Data

  • 摘要: 作为中间层和热层的边界层,中间层顶存在多种能量交换方式,是大气能量耦合的重要区域。本文利用部署于中科院廊坊野外观测站的钠荧光多普勒激光雷达2013年间的观测数据,研究了廊坊上空中间层顶区域大气温度的年度和季节分布特性,并分析了影响温度分布的多种因素。年平均温度廓线图显示,中间层顶位于约97.5 km高度处,温度约191.2 K。受放热化学反应的影响,年平均温度廓线91 km高度处出现了一个198 K的相对温度高点。中间层顶区域大气温度的季节分布受太阳辐射和大气动力学因素综合影响,夏季在大气动力学影响下,中间层顶高度较低,位于88 km高度处,温度也较低,约177 K;冬季太阳辐射起主导作用,中间层顶位于99 km高度处,温度为181 K。通过拟合月平均温度分析了中间层顶区域大气温度年变化和半年变化的振幅和相位特征。结果显示,中间层顶区域上部温度分布主要受太阳辐射的影响;在中间层顶区域下部,大气波动主导了温度分布。

     

  • 图  1  2013年廊坊钠激光雷达探测数据时间分布

    Figure  1.  Monthly observation hours and nights of sodium lidar for Langfang in 2013

    图  2  2013年廊坊钠原子数密度年平均值分布廓线

    Figure  2.  Annual mean number density profile of sodium atoms for Langfang station in 2013

    图  3  2013年钠激光雷达和SABER探测的廊坊中间层顶区域大气温度年平均值廓线

    Figure  3.  Annual mean temperature profiles of Langfang mesopause region in 2013, detected by Na lidar and SABER respectively

    图  4  2013年廊坊上空钠层大气温度月平均拟合值分布

    Figure  4.  Distribution of monthly average fitted values for atmospheric temperature in the sodium layer over Langfang in 2013

    图  5  2013年廊坊上空钠层大气温度季节平均值廓线

    Figure  5.  Seasonal mean temperature profiles in the sodium layer over Langfang in 2013

    图  6  2013年廊坊钠层温度年变化和半年变化的幅值廓线

    Figure  6.  Amplitude profiles of annual and semi-annual temperature changes in sodium layer 2013

    图  7  2013年钠层温度年变化和半年变化的相位廓线

    Figure  7.  Phase profiles of annual and semi-annual temperature changes in sodium layer 2013

    表  1  廊坊钠荧光多普勒激光雷达系统参数

    Table  1.   Langfang sodium fluorescence Doppler lidar system parameters

    系统参数参数值
    激光波长/nm589.2
    频率调节值/MHz±630
    脉冲能量/mJ300
    脉冲宽度/ns8
    发散角/mrad1
    脉冲频率/Hz30
    望远镜口径/m1
    视场角/mrad2
    滤波器带宽/nm1
    时间分辨率/min1
    高度分辨率/m76.5
    下载: 导出CSV
  • [1] 操文祥. 中间层顶与湍流层顶的SABER/TIMED观测研究[D]. 武汉: 武汉大学, 2012

    CAO Wenxiang. Observations of Atmospheric Mesopause and Wave Turbopause by SABER/TIMED Satellite[D]. Wuhan: Wuhan University, 2012
    [2] BOWMAN M R, GIBSON A J, SANDFORD M C W. Atmospheric sodium measured by a tuned laser radar[J]. Nature, 1969, 221(5179): 456-457 doi: 10.1038/221456a0
    [3] MEGIE G, BLAMONT J E. Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters[J]. Planetary and Space Science, 1977, 25(12): 1093-1109 doi: 10.1016/0032-0633(77)90085-X
    [4] FRICKE K H, VON ZAHN U. Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar[J]. Journal of Atmospheric and Terrestrial Physics, 1985, 47(5): 499-512 doi: 10.1016/0021-9169(85)90116-3
    [5] PHILBRICK C P, YANG F, VARGAS F A, et al. A Na density lidar method and measurements of turbulence to 105 km at the Andes Lidar Observatory[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 2021, 219: 105642 doi: 10.1016/j.jastp.2021.105642
    [6] HU X, GARDNER C S, LIU A Z. Seasonal and nocturnal variations of the mesospheric sodium layer at Starfire Optical Range, New Mexico[J]. Chinese Journal of Geophysics, 2003, 46(3): 432-437 doi: 10.1002/cjg2.3360
    [7] CHU X Z, CHEN Y F, CULLENS C Y, et al. Mid-latitude thermosphere-ionosphere Na (TINa) layers observed with high-sensitivity Na Doppler lidar over boulder (40.13°N, 105.24°W)[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093729 doi: 10.1029/2021GL093729
    [8] 胡雄, 闫召爱, 郭商勇, 等. 钠荧光多普勒激光雷达测量中间层顶区域大气温度[J]. 科学通报, 2011, 56(4): 247-253. DOI: 10.1007/s11434-010-4306-x

    HU Xiong, YAN Zhaoai, GUO Shangyong, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4): 417-423
    [9] SHE C Y, CHEN S S, HU Z L, et al. Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41°N, 105°W)[J]. Geophysical Research Letters, 2000, 27(20): 3289-3292 doi: 10.1029/2000GL003825
    [10] ROBERT J S, CHESTER S G. Thermal structure of the mesopause region (80–105 km) at 40°N latitude. Part I_ Seasonal variations[J]. Journal of The Atmospheric Sciences, 2000, 57: 66-77 DOI: https://doi.org/10.1175/1520-0469(2000)057<0066:TSOTMR>2.0.CO;2
    [11] MLYNCZAK M G, SOLOMON S. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species[J]. Geophysical Research Letters, 1991, 18(1): 37-40 doi: 10.1029/90GL02672
    [12] YU J R, SHE C Y. Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6°N, 105°W)[J]. Journal of Geophysical Research, 1995, 100(D4): 7441-7452 doi: 10.1029/94JD03109
    [13] GARCÍA-COMAS M, LÓPEZ-PUERTAS M, MARSHALL B T, et al. Errors in sounding of the atmosphere using broadband emission radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters[J]. Journal of Geophysical Research, 2008, 113(D24): D24106 doi: 10.1029/2008JD010105
    [14] SHE C Y, VON ZAHN U. Concept of a two-level mesopause: support through new lidar observations[J]. Journal of Geophysical Research, 1998, 103(D5): 5855-5863 doi: 10.1029/97JD03450
    [15] XU J Y, LIU H L, YUAN W, et al. Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations[J]. Journal of Geophysical Research, 2007, 112(D9): D09102 doi: 10.1029/2006JD007711
    [16] RAMESH K, SRIDHARAN S, RAGHUNATH K, et al. Planetary wave-gravity wave interactions during mesospheric inversion layer events[J]. Journal of Geophysical Research, 2013, 118(7): 4503-4515 doi: 10.1002/jgra.50379
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 录用日期:  2022-01-05
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-09-03

目录

    /

    返回文章
    返回