留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂深空通信网络的LTP传递时延建模及验证

余果 董振兴 朱岩

余果, 董振兴, 朱岩. 复杂深空通信网络的LTP传递时延建模及验证[J]. 空间科学学报. doi: 10.11728/cjss2022.05.211029109
引用本文: 余果, 董振兴, 朱岩. 复杂深空通信网络的LTP传递时延建模及验证[J]. 空间科学学报. doi: 10.11728/cjss2022.05.211029109
YU Guo, DONG Zhenxing, ZHU Yan. Modeling and Verification of File Delivery Delay for LTP in Complex Deep Space Networks (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.211029109
Citation: YU Guo, DONG Zhenxing, ZHU Yan. Modeling and Verification of File Delivery Delay for LTP in Complex Deep Space Networks (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.211029109

复杂深空通信网络的LTP传递时延建模及验证

doi: 10.11728/cjss2022.05.211029109
基金项目: 中国科学院战略性先导科技专项资助(XDA15014603)
详细信息
    作者简介:

    余果:E-mail:yuguo161@mails.ucas.edu.cn

  • 中图分类号: V524,TN919

Modeling and Verification of File Delivery Delay for LTP in Complex Deep Space Networks

  • 摘要: 针对简化场景下建立的LTP(Licklider Transmission Protocol)传递时延模型无法直接应用于复杂场景的问题,提出了一种复杂深空通信网络的LTP传递时延理论模型。已有相关研究多关注于一到两跳的简化场景或 bundle 保管开启状态下多跳场景数据传输模型的建立,然而其结果在复杂深空通信网络中,对于在 bundle 保管关闭状态下的深空通信并不适用。本文对LTP在复杂深空通信网络中的传输机制进行了分析,基于此分析对LTP在复杂深空通信网络中的传递时延进行了理论建模,搭建了仿真验证平台,仿真分析了模型的正确性及优势。结果表明,该模型的计算与实验结果较为吻合,相较于基于简化场景建立的理论模型,本文所提出的模型更加适用于复杂深空通信网络。

     

  • 图  1  复杂深空通信网络LTP详细传输过程

    Figure  1.  Detailed transmission process of LTP in a complex deep space network

    图  2  不同链路环境下仿真结果与模型计算结果对比

    Figure  2.  Comparison of simulation results and model calculation results with different link environments

    图  3  三种理论模型在不同链路环境下的MAPE对比

    Figure  3.  MAPE comparison of three theoretical models with different communication environments

    表  1  模型验证的实验参数配置

    Table  1.   Experiment parameter settings for model verification

    各段链路下行速率/(Byte·s–1)探测器−UNICON:7500
    UNICON卫星之间:2500
    UNICON-GEO:7500
    GEO-地面站:1250000
    信道速率非对称比(下行\上行)1:1,100:1,500:1
    BP托管机制关闭
    bundle尺寸/kByte50
    文件尺寸/MByte1
    LTP block尺寸1 bundle
    LTP session24
    LTP segment尺寸/Byte1400
    LTP segment数据链路层尺寸/Byte$ {L_{seg\_payload}} + 100 $
    误码率10–7, 10–6, 10–5, mul
    mul$ {N_U} = 3 $[10–6, 10–5, 10–5, 10–6, 10–7]
    $ {N_U} = 2 $[10–6, 10–5, 10–6, 10–7]
    $ {N_U} = 1 $[10–6, 10–6, 10–7]
    三种链路情况的单程延时/s$ {N_U} = 3 $:358+725×2+285+0.125=2093.125
    $ {N_U} = 2 $:296+725+273+0.125=1294.125
    $ {N_U} = 1 $:245+241+0.125=486.125
    实验次数10
    下载: 导出CSV

    表  2  计算MAPE的实验参数设置

    Table  2.   Parameter settings of experiments for calculating MAPEs

    标号数据传输
    路径情况
    BERCR
    aNU =21 e-7500:1
    bNU =21 e-6500:1
    cNU =21 e-5500:1
    dNU =21 e-5100:1
    eNU =21 e-51:1
    fNU =31 e-5500:1
    gNU =11 e-5500:1
    下载: 导出CSV
  • [1] ZHU L T, LI Y, ZHANG J X, et al. Application of contact graph routing in satellite delay tolerant networks[J]. Chinese Journal of Space Science, 2015, 35(1): 116-125
    [2] ALESSI N, CAINI C, DE COLA T, et al. DTN Performance in complex deep-space networks[C]//Proceeding of the 9 th Advanced Satellite Multimedia Systems Conference and the 15 th Signal Processing for Space Communications Workshop (ASMS/SPSC). Berlin: IEEE, 2018: 1-7
    [3] 杨冠男. 面向空间通信的DTN协议传输性能研究[D]. 南京: 南京大学, 2019

    YANG Guannan. A Study of Transmission Performance of DTN Protocol for Space Communication[D]. Nanjing: Nanjing University, 2019
    [4] YU Q, BURLEIGH S C, WANG R H, et al. Performance modeling of Licklider transmission protocol (LTP) in deep-space communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1609-1620 doi: 10.1109/TAES.2014.130763
    [5] 王洋, 杨宏, 陈晓光, 等. 深空通信LTP传递时延的理论建模及试验验证[J]. 系统仿真学报, 2017, 29(3): 479-486 doi: 10.16182/j.issn1004731x.joss.201703002

    WANG Yang, YANG Hong, CHEN Xiaoguang, et al. Theoretical model and validation of delivery time of LTP in deep space communication[J]. Journal of System Simulation, 2017, 29(3): 479-486 doi: 10.16182/j.issn1004731x.joss.201703002
    [6] WU Y L, LI Z X. Queueing analysis for delay/disruption tolerant networks with random link interruptions[C]//Proceeding of IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Chengdu: IEEE, 2016: 94-99
    [7] LENT R. Analysis of the block delivery time of the Licklider Transmission Protocol[J]. IEEE Transactions on Communications, 2019, 67(1): 518-526 doi: 10.1109/TCOMM.2018.2875717
    [8] LU H C, JIANG F K, WU J, et al. Performance improvement in DTNs by packet size optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2987-3000 doi: 10.1109/TAES.2015.140772
    [9] BURLEIGH S, FALL K, BIRRANE E. Bundle Protocol Version 7[R]. IRTF, 2018
    [10] RAMADAS M, BURLEIGH S, FARRELL S. Licklider Transmission Protocol–specification[J]. IRTF, 2008, 4(6): 208-304
    [11] YU G, DONG Z X, ZHU Y. Network evaluation and protocol deployment for complex deep-space networks based on DTN[J]. China Communications, 2020, 17(9): 237-258 doi: 10.23919/JCC.2020.09.018
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-23
  • 录用日期:  2021-12-14
  • 修回日期:  2022-02-26
  • 网络出版日期:  2022-09-03

目录

    /

    返回文章
    返回