留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CYGNSS海面风速固有误差与时空分布特征

刘帅 林文明 鲁云飞

刘帅, 林文明, 鲁云飞. CYGNSS海面风速固有误差与时空分布特征[J]. 空间科学学报. doi: 10.11728/cjss2022.05.211101110
引用本文: 刘帅, 林文明, 鲁云飞. CYGNSS海面风速固有误差与时空分布特征[J]. 空间科学学报. doi: 10.11728/cjss2022.05.211101110
LIU Shuai, LIN Wenming, LU Yunfei. Inherent Error and Temporal-Spatial Characteristics of GYGNSS Sea Surface Wind Speed (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.211101110
Citation: LIU Shuai, LIN Wenming, LU Yunfei. Inherent Error and Temporal-Spatial Characteristics of GYGNSS Sea Surface Wind Speed (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.05.211101110

CYGNSS海面风速固有误差与时空分布特征

doi: 10.11728/cjss2022.05.211101110
基金项目: 国家自然科学基金项目资助(42027805)
详细信息
    作者简介:

    刘帅:E-mail:20191237010@nuist.edu.cn

    通讯作者:

    林文明 E-mail:wenminglin@nuist.edu.cn

  • 中图分类号: P356

Inherent Error and Temporal-Spatial Characteristics of GYGNSS Sea Surface Wind Speed

  • 摘要: 全球导航卫星系统反射计(GNSS-R)是一种新兴的海面风速遥感技术,对GNSS-R反演风速进行详细定量分析是该技术从科学研究走向业务应用的必要条件。 以气旋全球导航卫星系统(CYGNSS)的风速数据为例,利用时空匹配的浮标风速和欧洲中期天气预报中心(ECMWF)的预报风速数据,详细分析了CYGNSS遥感风速的气候态特征和时空分布特征。基于三配对数据分析方法,阐明了CYGNSS遥感风速的固有误差,并提出了相应的风速标定系数。研究表明,GYGNSS的中低风速(w<10 m·s–1)精度较好,但高风速的误差显著增大;风速误差具有良好的时间一致性,但呈现明显的空间分布不均匀现象;总体而言,CYGNSS风速的固有误差约为1.79 m·s–1。研究结果一方面为CYGNSS风速数据的业务应用提供参考,另一方面也为进一步标定CYGNSS的反射测量信号提供依据。

     

  • 图  1  CYGNSS不同卫星的风速(a)及匹配的ECMWF风速(b)曲线

    Figure  1.  Fig.1 Wind speed curve for different CYGNSS satellites (a). Same as (a), but for the matched ECMWF wind speed (b)

    图  2  CYGNSS和ECMWF风速的变异性(标准差)随月份的变化(a)及CYGNSS 8颗卫星的风速变异性(b)

    Figure  2.  Monthly wind variability (Standard Deviation, SD) of CYGNSS and ECMWF (a), wind variability for the eight CYGNSS satellites (b)

    图  3  CYGNSS(a)和ECMWF(b)年平均风速的空间分布及风速变异性(不同网格点范围内风速的标准差)空间分布(c) (d)(网格的大小为0.125°×0.125°)

    Figure  3.  Geographic distribution of the annual mean wind speed for CYGNSS (a) and ECMWF (b,the spatial distribution of wind variability(Standard Deviation (SD) of wind speed in different grid points) for (c) and (d)(grid size is 0.125°×0.125°)

    图  4  (a)CYGNSS和ECMWF风速差异的均值,(b)不同卫星风速偏差随月份的变化;(c)CYGNSS和ECMWF风速差异的标准差,(d)不同卫星风速的标准差随月份变化的曲线。(参考风速为匹配的ECMWF预报风速)

    Figure  4.  The monthly distribution of CYGNSS wind speed bias for (a) all satellites’ data (b) each individual satellite. (c) (d) are the same as (a) and (b), but for the standard deviation of the wind speed difference between CYGNSS and ECMWF

    图  5  CYGNSS与ECMWF风速差异的均值(a)及标准差(b)的空间分布

    Figure  5.  Geographic distribution of the CYGNSS wind speed bias (a) and Standard Deviation (SD) ECMWF (b)

    图  6  CYGNSS、浮标、以及ECMWF风速两两对比的散点密度图

    Figure  6.  Scatter density plots of CYGNSS versus buoy wind speed (a), ECMWF versus buoy wind speed (b), and CYGNSS versus ECMWF wind speed (c)

    表  1  浮标、CYGNSS和ECMWF风速的校正系数与固有误差

    Table  1.   Correction factors and inherent errors of buoy, CYGNSS and ECMWF wind speeds

    单位比例因子偏差系数固有误差(m·s–1
    浮标1.000.001.06
    CYGNSS1.28–0.511.79
    ECMWF1.020.041.00
    下载: 导出CSV

    表  2  第一组数据浮标、CYGNSS和ECMWF风速的校正系数与固有误差

    Table  2.   Correction factors and inherent errors for the first group data set

    单位比例因子偏差系数固有误差(m·s–1
    浮标1.000.001.06
    CYGNSS1.18–0.461.78
    ECMWF1.020.040.99
    下载: 导出CSV

    表  3  第二组数据浮标、CYGNSS和ECMWF风速的校正系数与固有误差

    Table  3.   Correction factors and inherent errors for the second group data set

    单位比例因子偏差系数固有误差(m·s–1
    浮标101.06
    CYGNSS1.35–0.511.80
    ECMWF1.020.041.01
    下载: 导出CSV
  • [1] RODRIGUEZ-ALVAREZ N, AKOS D M, ZAVOROTNY V U, et al. Airborne GNSS-R wind retrievals using delay–Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 626-641 doi: 10.1109/TGRS.2012.2196437
    [2] UNWIN M, JALES P, TYE J, et al. Spaceborne GNSS-Reflectometry on TechDemoSat-1: early mission operations and exploitation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4525-4539 doi: 10.1109/JSTARS.2016.2603846
    [3] GRIECO G, STOFFELEN A, PORTABELLA M. Rationale of GNSS reflected delay–Doppler map (DDM) distortions induced by specular point inaccuracies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3-13 doi: 10.1109/JSTARS.2019.2938327
    [4] HUANG F X, GARRISON J L, LEIDNER S M, et al. A forward model for data assimilation of GNSS ocean Reflectometry delay-Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2643-2656 doi: 10.1109/TGRS.2020.3002801
    [5] LIN W M, PORTABELLA M, FOTI G, et al. Toward the generation of a wind geophysical model function for spaceborne GNSS-R[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 655-666 doi: 10.1109/TGRS.2018.2859191
    [6] 白伟华, 夏俊明, 万玮, 等. 中国GNSS-R机载实验综合评估: 河流遥感[J]. 科学通报, 2015, 60(17): 1527-1534 doi: 10.1007/s11434-015-0869-x

    BAI Weihua, XIA Junming, WAN Wei, et al. A first comprehensive evaluation of China's GNSS-R airborne campaign: part Ⅱ—river remote sensing[J]. Science Bulletin, 2015, 60(17): 1527-1534 doi: 10.1007/s11434-015-0869-x
    [7] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398

    JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New progress and application prospects of global navigation satellite system Reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398
    [8] CLARIZIA M P, GOMMENGINGER C P, GLEASON S T, et al. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean[J]. Geophysical Research Letters, 2009, 36(2): L02608
    [9] CLARIZIA M P, RUF C S. Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4419-4432 doi: 10.1109/TGRS.2016.2541343
    [10] 杨东凯, 刘毅, 王峰. 星载GNSS-R海面风速反演方法研究[J]. 电子与信息学报, 2018, 40(2): 462-469

    YANG Dongkai, LIU Yi, WANG Feng. Ocean surface wind speed retrieval using spaceborne GNSS-R[J]. Journal of Electronics & Information Technology, 2018, 40(2): 462-469
    [11] RUF C S, GLEASON S, JELENAK Z, et al. The CYGNSS nanosatellite constellation hurricane mission[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012: 214-216
    [12] Kim H , Lakshmi V , Kwon Y , et al. First attempt of global-scale assimilation of subdaily scale soil moisture estimates from CYGNSS and SMAP into a land surface model[J]. Environmental Research Letters, 2021, 16(7): 074041 (11 pp).
    [13] PASCUAL D, CLARIZIA M P, RUF C S. Spaceborne demonstration of GNSS-R scattering cross section sensitivity to wind direction[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8006005
    [14] FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission[J]. Geophysical Research Letters, 2015, 42(13): 5435-5441 doi: 10.1002/2015GL064204
    [15] GRIECO G, STOFFELEN A, PORTABELLA M, et al. Quality control of delay-Doppler maps for stare processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2990-3000 doi: 10.1109/TGRS.2018.2879059
    [16] CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6829-6843 doi: 10.1109/TGRS.2014.2303831
    [17] 李伟强, 杨东凯, 李明里, 等. 面向遥感的GNSS反射信号接收处理系统及实验[J]. 武汉大学学报·信息科学版, 2011, 36(10): 1204-1208

    LI Weiqiang, YANG Dongkai, LI Mingli, et al. Design and experiments of GNSS-R receiver system for remote sensing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1204-1208
    [18] 袁国良, 张卫峰, 卫豪杰. 基于GNSS-R的反演海面风速技术的研究[J]. 微型机与应用, 2017, 36(13): 88-90,93

    YUAN Guoliang, ZHANG Weifeng, WEI Haojie. Sea surface wind speed measurement using GNSS reflection signal[J]. Microcomputer & Its Applications, 2017, 36(13): 88-90,93
    [19] 骆黎明, 白伟华, 孙越强, 等. 基于树模型机器学习方法的GNSS-R海面风速反演[J]. 空间科学学报, 2020, 40(4): 595-601

    LUO Liming, BAI Weihua, SUN Yueqiang, et al. GNSS-R sea surface wind speed inversion based on tree model machine learning method[J]. Chinese Journal of Space Science, 2020, 40(4): 595-601
    [20] 吕帆, 修春娣, 王峰, 等. GNSS-R海面风场反演模型仿真分析[J]. 导航定位学报, 2018, 6(3): 87-91,97

    LYU Fan, XIU Chundi, WANG Feng, et al. Simulation analysis on GNSS-R ocean surface wind field retrieval model[J]. Journal of Navigation and Positioning, 2018, 6(3): 87-91,97
    [21] LIU W T, KATSAROS K B, BUSINGER J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 1979, 36(9): 1722-1735 doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
    [22] STOFFELEN A. Toward the true near-surface wind speed: error modeling and calibration using triple collocation[J]. Journal of Geophysical Research:Oceans, 1998, 103(C4): 7755-7766 doi: 10.1029/97JC03180
    [23] GRUBER A, DORIGO W A, CROW W, et al. Triple collocation-based merging of satellite soil moisture retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6780-6792 doi: 10.1109/TGRS.2017.2734070
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 录用日期:  2021-12-30
  • 修回日期:  2022-06-08
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回