Ground Experiment Investigation of PIV Unit for Combustion Science Experimental System of China Space Station
-
摘要: 中国空间站燃烧科学实验系统是用于开展微重力燃烧实验研究的综合性科学实验平台,可以实现燃烧流场测量。为了验证燃烧科学实验系统粒子图像测速(PIV)单元对燃烧流场测量的功能与可行性,本文基于与在轨状态一致的连续激光器和相机的空间布局,搭建了地面层流圆孔射流试验平台,选取Al2O3,TiO2,ZrO2三种示踪粒子进行冷态试验与热态试验。试验结果表明,自主研制Nd∶YVO4泵浦连续激光器偏光角度合适,能照亮被测流场主流区域,燃烧科学实验系统PIV单元可用于低速燃烧流场测量;相同工况下,Al2O3粒子在冷态试验测量的速度值更接近于理论值,速度幅值比更接近1,更适用于低速流体测量。Abstract: The Combustion Science Experimental System of China Space Station is a comprehensive scientific platform for microgravity combustion experiment research, which is feasible for velocity measurement. In order to test the feasibility function of Particle Image Velocimetry (PIV), an experimental platform for laminar circular orifice jet, which has the same spatial layout of the laser and camera as that in-orbit operation, was built for reacting flow field and non-reacting flow field experiment. Al2O3, TiO2 and ZrO2 were selected as tracer particles. The experimental results indicate that the combustion science experimental system of PIV unit is feasible for low-speed combustion field measurement. Under the same conditions, the obtained velocities by using Al2O3 particles are closer to analytical values with velocity amplitude ratio nearest to 1, which suggests that Al2O3 particles are more suitable for low-speed field. The present study can provide the selection basis for particle species in ground-space comparison experiments.
-
表 1 激光流场诊断技术
Table 1. Laser diagnostic technology of flow field
测速方法 测量原理 测量特点 不足 粒子图像测速技术(PIV) 粒子示踪
激光散射
粒子成像
互相关算法特定波长激光激发
粒子成像可见性
多点瞬时流场需添加示踪粒子 激光多普勒测速技术(LDV) 粒子示踪
激光散射
光电转换
多普勒频移单一频率激光激发
分光、聚焦光路
光信号收集与检测需添加示踪粒子
单点测量激光诱导荧光技术(LIF) 分子示踪
激光诱导荧光
光谱比分法紫外调谐激光激发
多种组分定性化测量
荧光弱、时间短
吸收波段窄可调谐二极管激光吸收光谱技术 (TDLAS) 分子示踪
零吸收基线拟合
多普勒频移激光激发
吸收中心频移
分光、聚焦光路空间分辨率低 表 2 连续激光器与高速相机主要技术参数
Table 2. Main parameters of camera and laser
连续激光器 高速相机 激光器类型 Nd∶YVO4 相机型号 PCO.DIMAX.CS1 (黑白版本) 尺寸/mm 211×190×344 尺寸/mm 85×85×102.5 质量/kg 7.9 (不含水冷) 质量/kg 0.985 (含C-mount) 激光功率/W 10 曝光时间/ms 0.0015~40 功率稳定性 小于3% (RMS) 像元尺寸/μm 11×11 波长/nm 532 图像拍摄速率/(frame·s–1) 3086 (满分辨率1296 pixel×1024 pixel) 偏光角度/(°) 15 ISO灵敏度 1250~16000 表 3 示踪粒子物理特性
Table 3. Physics properties of the three tracer particles used
粒子类型 粒径/μm 密度/(kg·m–3) 熔点/℃ 粒子响应时间(×10–6)/s 密度比 相对折射指数 Al2O3 0.3~0.5 2100 2054 1.578 1627.9 1.765 TiO2 0.3~0.5 3140 1840 2.362 2434.1 2.61 ZrO2 0.3~0.5 7110 2700 5.349 5511.6 2.17 -
[1] 孔文俊, 张孝谦. 微重力环境下燃烧科学研究的机遇与进展[J]. 燃烧科学与技术, 1997, 3(4): 424-436KONG Wenjun, ZHANG Xiaoqian. Opportunities and progress of research on combustion in microgravity[J]. Journal of Combustion Science and Technology, 1997, 3(4): 424-436 [2] 赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034 [3] IRACE P H, LEE H J, WADDELL K, et al. Observations of long duration microgravity spherical diffusion flames aboard the international space station[J]. Combustion and Flame, 2021, 229: 111373 doi: 10.1016/j.combustflame.2021.02.019 [4] LIN K C, FAETH G M, SUNDERLAND P B, et al. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116(3): 415-431 doi: 10.1016/S0010-2180(98)00100-X [5] DOTSON K, SUNDERLAND P, YUAN Z G, et al. Laminar smoke points in coflow measured aboard the international space station[C]//Proceedings of the 48 th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2010 [6] FAROUK T I, HICKS M C, DRYER F L. Multistage oscillatory “Cool Flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1701-1708 doi: 10.1016/j.proci.2014.06.015 [7] YOSHIDA Y, IWAI K, NAGATA K, et al. Flame-spread limit from interactive burning droplets in microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3409-3416 doi: 10.1016/j.proci.2018.07.106 [8] YOSHIDA Y, SEO T, MIKAMI M, et al. Temperature-field analysis of flame spread over droplet-cloud elements with interactive droplets in microgravity aboard Kibo on ISS[J]. International Journal of Microgravity Science and Application, 2019, 36(3): 360303 [9] KIMZEY J H. Skylab experiment M479 Zero gravity flammability[C]//Proceedings of the 3rd Space Processing Symposium on Skylab Results. Skylab Results: 1974: 115-130 [10] LI Y J, LIAO Y T T, FERKUL P V, et al. Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity[J]. Combustion and Flame, 2021, 227: 39-51 doi: 10.1016/j.combustflame.2020.12.042 [11] WU C J, HUANG X Y, WANG S F, et al. Opposed flame spread over cylindrical PMMA under oxygen-enriched microgravity environment[J]. Fire Technology, 2020, 56(1): 71-89 doi: 10.1007/s10694-019-00896-8 [12] 王双峰, 尹永利. 卫星搭载聚氨酯泡沫闷烧实验[J]. 空间科学学报, 2008, 28(1): 22-27 doi: 10.11728/cjss2008.01.022WANG Shuangfeng, YIN Yongli. Microgravity smoldering combustion experiments aboard the China recoverable satellite SJ-8[J]. Chinese Journal of Space Science, 2008, 28(1): 22-27 doi: 10.11728/cjss2008.01.022 [13] 杨斌, 齐宗满, 杨荟楠, 等. 基于TDLAS的燃烧流场速度测量方法[J]. 燃烧科学与技术, 2015, 21(6): 516-520YANG Bin, QI Zongman, YANG Huinan, et al. Velocity measurement method based on TDLAS for combustion flow[J]. Journal of Combustion Science and Technology, 2015, 21(6): 516-520 [14] 张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072ZHANG Zhenzhong, KONG Wenjun, ZHANG Hualiang. Design of combustion science experimental system for China space station[J]. Chinese Journal of Space Science, 2020, 40(1): 72-78 doi: 10.11728/cjss2020.01.072 [15] 王振南, 张扬, 吴玉新, 等. PIV对射流煤粉火焰流场特性的分析[J]. 工程热物理学报, 2015, 36(6): 1356-1359WANG Zhennan, ZHANG Yang, WU Yuxin, et al. Analysis on flow field of coal jet flame using PIV[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1356-1359 [16] 李志平. 激光粒子图像测量中示踪粒子特性及实验方法研究[D]. 天津: 天津大学, 2007LI Zhiping. Research on the Features of Particle Tracers and Experimental Technique of Laser Particle Image Measurement[D]. Tianjin: Tianjin University, 2007 [17] 唐春晓. 基于多光谱成像的数字粒子图像测速技术研究[D]. 天津: 天津大学, 2010TANG Chunxiao. Study of Digital Particle Image Velocimetry Based on Multispectral Imaging[D]. Tianjin: Tianjin University, 2010 [18] 平浚. 射流理论基础及应用[M]. 北京: 宇航出版社, 1995PING Jun. Theoretical Basis and Application of Jet[M]. Beijing: Astronautic Publishing, 1995 [19] 赵伟伟, 张栋, 史强, 等. 焙烧温度对TiO2粉末的微结构及光催化特性的影响[J]. 中国科技信息, 2011(19): 72-73ZHAO Weiwei, ZHANG Dong, SHI Qiang, et al. Effect of calcination temperature on the structure and photocatalytic properties of TiO2 powder[J]. China Science and Technology Information, 2011(19): 72-73 [20] 特纳斯. 燃烧学导论: 概念与应用[M]. 姚强, 李水清, 王宇, 译. 3版. 北京: 清华大学出版社, 2015TURNS S R. An Introduction to Combustion: Concepts and Applications[M]. YAO Qiang, LI Shuiqing, WANG Yu, trans. 3rd ed. Beijing: Tsinghua University Press, 2015 -