留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年10月11日地磁暴对两座变电站GIC的影响

高贺 张倩然 刘连光 王鹏 姜楠 周立超

高贺, 张倩然, 刘连光, 王鹏, 姜楠, 周立超. 2021年10月11日地磁暴对两座变电站GIC的影响[J]. 空间科学学报, 2022, 42(6): 1145-1151. doi: 10.11728/cjss2022.06.211130127
引用本文: 高贺, 张倩然, 刘连光, 王鹏, 姜楠, 周立超. 2021年10月11日地磁暴对两座变电站GIC的影响[J]. 空间科学学报, 2022, 42(6): 1145-1151. doi: 10.11728/cjss2022.06.211130127
GAO He, ZHANG Qianran, LIU Lianguang, WANG Peng, JIANG Nan, ZHOU Lichao. Influence Factors of GIC in Two Substations of Geomagnetic Storm on 11 October 2021 (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1145-1151 doi: 10.11728/cjss2022.06.211130127
Citation: GAO He, ZHANG Qianran, LIU Lianguang, WANG Peng, JIANG Nan, ZHOU Lichao. Influence Factors of GIC in Two Substations of Geomagnetic Storm on 11 October 2021 (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1145-1151 doi: 10.11728/cjss2022.06.211130127

2021年10月11日地磁暴对两座变电站GIC的影响

doi: 10.11728/cjss2022.06.211130127
基金项目: 国家自然科学基金项目(51577060)和国网内蒙古东部电力有限公司项目(526604200001)共同资助
详细信息
    作者简介:

    高贺:E-mail:gaohe8997@sina.com

    通讯作者:

    刘连光,E-mail:liulianguang@ncepu.edu.cn

  • 中图分类号: P353

Influence Factors of GIC in Two Substations of Geomagnetic Storm on 11 October 2021

  • 摘要: 近年来中国相继监测到地磁暴侵害电网、铁路轨道电路和油气管道系统产生的地磁感应电流(Geomagnetically Induced Current,GIC)数据,但是目前实测的GIC数据还相对较少。根据2021年10月9日日冕物质抛射事件(CME)产生的Kp指数为6的地磁扰动(Geomagnetic Disturbance,GMD)数据,500 kV阿拉坦变电站(48.7°N,116.8°E)和上河变电站(33.4°N,119.2°E)及输电系统的参数,分析了2021年10月11日地磁暴期间在两座变电站监测到的GIC数据以及输电系统参数对GIC量值的影响。结果表明:地磁暴在500 kV上河变电站产生的GIC比阿拉坦变电站GIC量值相对较大。分析结果说明,在这次磁暴事件中,输电线路导线电阻是影响变电站GIC的主要因素。

     

  • 图  1  阿拉坦站GIC和满洲里台站dH/dt数据随时间的变化

    Figure  1.  Time evolution of GIC and dH / dt data at Alatan station and Manchurian station

    图  2  上河站GIC与九峰地磁台数据比较

    Figure  2.  Comparison of GIC between Shanghe station and Jiufeng geomagnetic station

    图  3  九峰和满洲里地磁台站GMD数据比较

    Figure  3.  Comparison of GMD data between Jiufeng and Manzhouli geomagnetic stations

    图  4  扎鲁特–昌图大地电磁剖面数据

    Figure  4.  Geomagnetic profile data of Zarut-Changtu

    图  5  阿拉坦站GIC计算模型

    Figure  5.  GIC calculation model of Alatan station

    图  6  上河站GIC计算模型

    Figure  6.  GIC calculation model of Shanghe station

    表  1  江苏各地区岩石电性特征

    Table  1.   Rock electrical characteristics in Jiangsu province

    岩性电阻率/(Ω·m–1
    陆相碎屑岩 6~40
    砂泥岩 5~10
    火山喷发岩 70~100
    砂页岩、石英砂岩 10~100
    海陆交互相灰岩、白云岩 250~350
    海相灰岩 250~350
    中、酸基性或超基性入侵岩 >1000
    下载: 导出CSV

    表  2  500 kV和220 kV变电站电阻参数

    Table  2.   Resistance parameters of 500 kV and 220 kV substations

    电压等级/kV变压器直流
    电阻/Ω
    变电站接地
    电阻/Ω
    500串联绕组 0.2380.2
    公共绕组 0.097
    2200.4510.3
    下载: 导出CSV

    表  3  阿拉坦站GIC模型输电线路参数

    Table  3.   GIC model transmission line parameters of Alatan station

    电压等级/kV线路位置线路长
    度/km
    回路数导线型号
    500 kV 阿拉坦–科尔沁 256.12 2 LGJ-6×300
    铝都–阿拉坦 33.21 2 LGJ-6×300
    霍林河坑口–铝都 15.8 2 LGJ-4×300
    200 kV 昆都楞–阿拉坦 2.568 2 LGJ-400
    萨如拉–阿拉坦 40.36 2 LGJ-400
    阿拉坦–霍林河 52.98 2 LGJ-400
    阿拉坦–鲁北 117.11 1 LGJQ-400
    阿拉坦–北沙 32.44 2 LGJ-2×300
    下载: 导出CSV

    表  4  上河站GIC模型输电线路参数

    Table  4.   GIC model transmission line parameters of Shanghe station

    电压等级/kV线路位置线路长度/km回路数导线型号
    500上河–双泗18.242LGJ-6×400
    双泗–三堡19.802LGJ-6×400
    上河–任庄41.82LGJ-6×400
    220上河–安宜4.092LGJ-400
    上河–黄塍3.782LGJ-400
    下载: 导出CSV
  • [1] KAPPERNMAN J G, ALBERTSON V D. Bracing for the geomagnetic storms[J]. IEEE Spectrum, 1990, 27(3): 27-33 doi: 10.1109/6.48847
    [2] PULKKINEN A, LINDAHL S, VILJANEN A, et al. Geomagnetic storm of 29-31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system[J]. Space Weather, 2005, 3(8): S08C03
    [3] KAPPENMAN J G. Geomagnetic storms and their impact on power systems[J]. IEEE Power Engineering Review, 1996, 16(5): 5 doi: 10.1109/MPER.1996.491910
    [4] WIK M, PIRJOLA R, LUNDSTEDT H, et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems[J]. Annales Geophysicae, 2009, 27(4): 1775-1787 doi: 10.5194/angeo-27-1775-2009
    [5] LIU C M, LIU L G, PIRJOLA R. Geomagnetically induced currents in the high-voltage power grid in China[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 2368-2374 doi: 10.1109/TPWRD.2009.2028490
    [6] LIU L G, GE X N, ZONG W, et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway[J]. Space Weather, 2016, 14(10): 754-763 doi: 10.1002/2016SW001411
    [7] YU Z B, HAO J H, LIU L G, et al. Monitoring experiment of electromagnetic interference effects caused by geomagnetic storms on buried pipelines in China[J]. IEEE Access, 2019, 7: 14603-14610 doi: 10.1109/ACCESS.2019.2893963
    [8] 李海明, 陶勇, 张俊双, 等. 基于1989年3月地磁暴的蒙东电网事故风险评估[J]. 电网技术, 2020, 44(11): 4427-4434 doi: 10.13335/j.1000-3673.pst.2019.2269

    LI Haiming, TAO Yong, ZHANG Junshuang, et al. Risk assessment of east Inner Mongolia power grid accident based on geomagnetic storm in March 1989[J]. Power System Technology, 2020, 44(11): 4427-4434 doi: 10.13335/j.1000-3673.pst.2019.2269
    [9] ALBERTSON V D, THORSON J M, MISKE S A, et al. The effects of geomagnetic storms on electric power system[J]. IEEE Transactions on power Apparatus and Systems, 1974, PAS-93(4): 1031-1044 doi: 10.1109/TPAS.1974.294047
    [10] PIRJOLA R. Geomagnetically induced currents during magnetic storms[J]. IEEE Transactions on Plasma Science, 2000, 28(6): 1867-1873 doi: 10.1109/27.902215
    [11] BOTELER D H, PIRJOLA R J. The complex-image method for calculating the magnetic and electric fields produced at the surface of the earth by the auroral electrojet[J]. Geophysical Journal International, 1998, 132(1): 31-40
    [12] PIRJOLA R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics, 2002, 23(1): 71-90 doi: 10.1023/A:1014816009303
    [13] 刘连光. 磁暴对中国电网的影响[J]. 电网与水力发电进展, 2008, 24(5): 1-6

    LIU Lianguang. The effects on Chinese power grid by magnetic storm[J]. Advances of Power System & Hydroelectric Engineering, 2008, 24(5): 1-6
    [14] 王颖, 刘春明, 刘连光, 等. 电网地磁感应电流在线监测系统[J]. 电力系统自动化, 2009, 33(15): 112-115 doi: 10.3321/j.issn:1000-1026.2009.15.023

    WANG Ying, LIU Chunming, LIU Lianguang, et al. An online monitoring system of geomagnetically induced current in power grid[J]. Automation of Electric Power Systems, 2009, 33(15): 112-115 doi: 10.3321/j.issn:1000-1026.2009.15.023
    [15] 刘连光, 朱溪, 王泽忠, 等. 基于K 值法的单相四柱式特高压主体变的GIC-Q损耗计算[J]. 高电压技术, 2017, 43(7): 2340-2348

    LIU Lianguang, ZHU Xi, WANG Zezhong, et al. Calculation for reactive power loss of single-phase four limbs UHV main transformer due to geomagnetically induced currents with parameter K [J]. High Voltage Engineering, 2017, 43(7): 2340-2348
    [16] 刘连光, 王开让, 郭世晓, 等. 双电压等级电网GIC的相互作用特征[J]. 中国科学: 技术科学, 2015, 45(12): 1311-1320 doi: 10.1360/N092015-00107

    LIU Lianguang, WANG Kairang, GUO Shixiao, et al. Characteristics of GIC interaction in a dual-voltage-level power network[J]. Scientia Sinica Technologica, 2015, 45(12): 1311-1320 doi: 10.1360/N092015-00107
    [17] 董博, 王泽忠, 刘连光, 等. 大地电导率横向突变处磁暴感应地电场的邻近效应[J]. 地球物理学报, 2015, 58(1): 238-246 doi: 10.6038/cjg20150121

    DONG Bo, WANG Zezhong, LIU Lianguang, et al. The proximity effect on the induced geoelectric field at the interface of different conductivity structures with lateral variations during geomagnetic storms[J]. Chinese Journal of Geophysics, 2015, 58(1): 238-246 doi: 10.6038/cjg20150121
    [18] 李寿寅, 屈秀宜. 江苏省区域地质特征概述[J]. 中国区域地质, 1990(3): 193-205,221

    LI Shouyin, QU Xiuyi. A brief account of the regional geological characteristics of Jiangsu Province[J]. Regional Geology of China, 1990(3): 193-205,221
    [19] 刘连光, 崔明德, 孙中明, 等. ±800 kV直流接地极对交流电网的影响范围[J]. 高电压技术, 2009, 35(6): 1243-1247

    LIU Lianguang, CUI Mingde, SUN Zhongming, et al. Influence scope of AC network by DC grounding electrode rated ±800 kV[J]. High Voltage Engineering, 2009, 35(6): 1243-1247
    [20] 刘连光, 姜克如, 李洋, 等. 直流接地极近区三维大地电阻率模型建立方法[J]. 中国电机工程学报, 2018, 38(6): 1622-1630 doi: 10.13334/j.0258-8013.pcsee.170572

    LIU Lianguang, JIANG Keru, LI Yang, et al. Three-dimensional earth resistivity structure modelling around DC ground electrode[J]. Proceedings of the CSEE, 2018, 38(6): 1622-1630 doi: 10.13334/j.0258-8013.pcsee.170572
    [21] HORTON R, BOTELER H D, OVERBYE T J, et al. A test case for the calculation of geomagnetically induced currents[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2368-2373 doi: 10.1109/TPWRD.2012.2206407
    [22] North American Electric Reliability Council. Transformer Thermal Impact Assessment White Paper TPL-007-2Transmission System Planned Performance for Geomagnetic Disturbance Events[R]. Atlanta: NERC, 2017
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  126
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 录用日期:  2022-05-31
  • 修回日期:  2022-02-08
  • 网络出版日期:  2022-11-30

目录

    /

    返回文章
    返回