Influence Factors of GIC in Two Substations of Geomagnetic Storm on 11 October 2021
-
摘要: 近年来中国相继监测到地磁暴侵害电网、铁路轨道电路和油气管道系统产生的地磁感应电流(Geomagnetically Induced Current,GIC)数据,但是目前实测的GIC数据还相对较少。根据2021年10月9日日冕物质抛射事件(CME)产生的Kp指数为6的地磁扰动(Geomagnetic Disturbance,GMD)数据,500 kV阿拉坦变电站(48.7°N,116.8°E)和上河变电站(33.4°N,119.2°E)及输电系统的参数,分析了2021年10月11日地磁暴期间在两座变电站监测到的GIC数据以及输电系统参数对GIC量值的影响。结果表明:地磁暴在500 kV上河变电站产生的GIC比阿拉坦变电站GIC量值相对较大。分析结果说明,在这次磁暴事件中,输电线路导线电阻是影响变电站GIC的主要因素。Abstract: In recent years, China has successively monitored the Geomagnetically Induced Current (GIC) data generated by geomagnetic storms against the power grid, railway track circuit as well as the oil and gas pipeline system, However, the measured GIC data are relatively few at present. According to the Geomagnetic Disturbance (GMD) data of geomagnetic storm with Kp index of 6 generated by CME on 9 October 2021, the parameters of 500 kV Alatan substation (48.7°N, 116.8°E), Shanghe substation (33.4°N, 119.2°E) and transmission system, the GIC data monitored in two substations during the geomagnetic storm on 11 October 2021, and the influence of transmission system parameters on the GIC value are analyzed. Results show that the GIC value produced by geomagnetic storm in 500 kV Shanghe substation is relatively larger than that in Alatan substation. The analysis results show that the conductor resistance of transmission line is the main factor affecting the GIC of substation in this magnetic storm event.
-
表 1 江苏各地区岩石电性特征
Table 1. Rock electrical characteristics in Jiangsu province
岩性 电阻率/(Ω·m–1) 陆相碎屑岩 6~40 砂泥岩 5~10 火山喷发岩 70~100 砂页岩、石英砂岩 10~100 海陆交互相灰岩、白云岩 250~350 海相灰岩 250~350 中、酸基性或超基性入侵岩 >1000 表 2 500 kV和220 kV变电站电阻参数
Table 2. Resistance parameters of 500 kV and 220 kV substations
电压等级/kV 变压器直流
电阻/Ω变电站接地
电阻/Ω500 串联绕组 0.238 0.2 公共绕组 0.097 220 0.451 0.3 表 3 阿拉坦站GIC模型输电线路参数
Table 3. GIC model transmission line parameters of Alatan station
电压等级/kV 线路位置 线路长
度/km回路数 导线型号 500 kV 阿拉坦–科尔沁 256.12 2 LGJ-6×300 铝都–阿拉坦 33.21 2 LGJ-6×300 霍林河坑口–铝都 15.8 2 LGJ-4×300 200 kV 昆都楞–阿拉坦 2.568 2 LGJ-400 萨如拉–阿拉坦 40.36 2 LGJ-400 阿拉坦–霍林河 52.98 2 LGJ-400 阿拉坦–鲁北 117.11 1 LGJQ-400 阿拉坦–北沙 32.44 2 LGJ-2×300 表 4 上河站GIC模型输电线路参数
Table 4. GIC model transmission line parameters of Shanghe station
电压等级/kV 线路位置 线路长度/km 回路数 导线型号 500 上河–双泗 18.24 2 LGJ-6×400 双泗–三堡 19.80 2 LGJ-6×400 上河–任庄 41.8 2 LGJ-6×400 220 上河–安宜 4.09 2 LGJ-400 上河–黄塍 3.78 2 LGJ-400 -
[1] KAPPERNMAN J G, ALBERTSON V D. Bracing for the geomagnetic storms[J]. IEEE Spectrum, 1990, 27(3): 27-33 doi: 10.1109/6.48847 [2] PULKKINEN A, LINDAHL S, VILJANEN A, et al. Geomagnetic storm of 29-31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system[J]. Space Weather, 2005, 3(8): S08C03 [3] KAPPENMAN J G. Geomagnetic storms and their impact on power systems[J]. IEEE Power Engineering Review, 1996, 16(5): 5 doi: 10.1109/MPER.1996.491910 [4] WIK M, PIRJOLA R, LUNDSTEDT H, et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems[J]. Annales Geophysicae, 2009, 27(4): 1775-1787 doi: 10.5194/angeo-27-1775-2009 [5] LIU C M, LIU L G, PIRJOLA R. Geomagnetically induced currents in the high-voltage power grid in China[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 2368-2374 doi: 10.1109/TPWRD.2009.2028490 [6] LIU L G, GE X N, ZONG W, et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway[J]. Space Weather, 2016, 14(10): 754-763 doi: 10.1002/2016SW001411 [7] YU Z B, HAO J H, LIU L G, et al. Monitoring experiment of electromagnetic interference effects caused by geomagnetic storms on buried pipelines in China[J]. IEEE Access, 2019, 7: 14603-14610 doi: 10.1109/ACCESS.2019.2893963 [8] 李海明, 陶勇, 张俊双, 等. 基于1989年3月地磁暴的蒙东电网事故风险评估[J]. 电网技术, 2020, 44(11): 4427-4434 doi: 10.13335/j.1000-3673.pst.2019.2269LI Haiming, TAO Yong, ZHANG Junshuang, et al. Risk assessment of east Inner Mongolia power grid accident based on geomagnetic storm in March 1989[J]. Power System Technology, 2020, 44(11): 4427-4434 doi: 10.13335/j.1000-3673.pst.2019.2269 [9] ALBERTSON V D, THORSON J M, MISKE S A, et al. The effects of geomagnetic storms on electric power system[J]. IEEE Transactions on power Apparatus and Systems, 1974, PAS-93(4): 1031-1044 doi: 10.1109/TPAS.1974.294047 [10] PIRJOLA R. Geomagnetically induced currents during magnetic storms[J]. IEEE Transactions on Plasma Science, 2000, 28(6): 1867-1873 doi: 10.1109/27.902215 [11] BOTELER D H, PIRJOLA R J. The complex-image method for calculating the magnetic and electric fields produced at the surface of the earth by the auroral electrojet[J]. Geophysical Journal International, 1998, 132(1): 31-40 [12] PIRJOLA R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics, 2002, 23(1): 71-90 doi: 10.1023/A:1014816009303 [13] 刘连光. 磁暴对中国电网的影响[J]. 电网与水力发电进展, 2008, 24(5): 1-6LIU Lianguang. The effects on Chinese power grid by magnetic storm[J]. Advances of Power System & Hydroelectric Engineering, 2008, 24(5): 1-6 [14] 王颖, 刘春明, 刘连光, 等. 电网地磁感应电流在线监测系统[J]. 电力系统自动化, 2009, 33(15): 112-115 doi: 10.3321/j.issn:1000-1026.2009.15.023WANG Ying, LIU Chunming, LIU Lianguang, et al. An online monitoring system of geomagnetically induced current in power grid[J]. Automation of Electric Power Systems, 2009, 33(15): 112-115 doi: 10.3321/j.issn:1000-1026.2009.15.023 [15] 刘连光, 朱溪, 王泽忠, 等. 基于K 值法的单相四柱式特高压主体变的GIC-Q损耗计算[J]. 高电压技术, 2017, 43(7): 2340-2348LIU Lianguang, ZHU Xi, WANG Zezhong, et al. Calculation for reactive power loss of single-phase four limbs UHV main transformer due to geomagnetically induced currents with parameter K [J]. High Voltage Engineering, 2017, 43(7): 2340-2348 [16] 刘连光, 王开让, 郭世晓, 等. 双电压等级电网GIC的相互作用特征[J]. 中国科学: 技术科学, 2015, 45(12): 1311-1320 doi: 10.1360/N092015-00107LIU Lianguang, WANG Kairang, GUO Shixiao, et al. Characteristics of GIC interaction in a dual-voltage-level power network[J]. Scientia Sinica Technologica, 2015, 45(12): 1311-1320 doi: 10.1360/N092015-00107 [17] 董博, 王泽忠, 刘连光, 等. 大地电导率横向突变处磁暴感应地电场的邻近效应[J]. 地球物理学报, 2015, 58(1): 238-246 doi: 10.6038/cjg20150121DONG Bo, WANG Zezhong, LIU Lianguang, et al. The proximity effect on the induced geoelectric field at the interface of different conductivity structures with lateral variations during geomagnetic storms[J]. Chinese Journal of Geophysics, 2015, 58(1): 238-246 doi: 10.6038/cjg20150121 [18] 李寿寅, 屈秀宜. 江苏省区域地质特征概述[J]. 中国区域地质, 1990(3): 193-205,221LI Shouyin, QU Xiuyi. A brief account of the regional geological characteristics of Jiangsu Province[J]. Regional Geology of China, 1990(3): 193-205,221 [19] 刘连光, 崔明德, 孙中明, 等. ±800 kV直流接地极对交流电网的影响范围[J]. 高电压技术, 2009, 35(6): 1243-1247LIU Lianguang, CUI Mingde, SUN Zhongming, et al. Influence scope of AC network by DC grounding electrode rated ±800 kV[J]. High Voltage Engineering, 2009, 35(6): 1243-1247 [20] 刘连光, 姜克如, 李洋, 等. 直流接地极近区三维大地电阻率模型建立方法[J]. 中国电机工程学报, 2018, 38(6): 1622-1630 doi: 10.13334/j.0258-8013.pcsee.170572LIU Lianguang, JIANG Keru, LI Yang, et al. Three-dimensional earth resistivity structure modelling around DC ground electrode[J]. Proceedings of the CSEE, 2018, 38(6): 1622-1630 doi: 10.13334/j.0258-8013.pcsee.170572 [21] HORTON R, BOTELER H D, OVERBYE T J, et al. A test case for the calculation of geomagnetically induced currents[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2368-2373 doi: 10.1109/TPWRD.2012.2206407 [22] North American Electric Reliability Council. Transformer Thermal Impact Assessment White Paper TPL-007-2Transmission System Planned Performance for Geomagnetic Disturbance Events[R]. Atlanta: NERC, 2017 -