Simulation of Solar Ultraviolet Radiation Environment in Near Space and Analysis of Topographic Difference
-
摘要: 太阳紫外辐射是临近空间能量输入的主要来源之一,对其在中层大气的辐射特性进行研究,是研究临近空间大气成分与密度变化、光化学反应以及动力学过程的重要基础。依托“鸿鹄”临近空间探测专项计划,利用MODTRAN5辐射传输模型及卫星实测数据,模拟并对比中国11个主要地形区上空临近空间(20~50 km)紫外辐射(200~400 nm)垂直分布和季节演变的异同,计算了臭氧含量、太阳天顶角和日地距离等关键因素对辐射强度的影响。结果表明,各地形区的辐射流量垂直分布廓线和年较差垂直分布廓线较为一致,在地理位置上毗邻的地区辐射特性及季节演变较为接近,但在太阳紫外的不同波段之间区别较大。研究成果为临近空间探测实验提供了数据支撑,为大气反演等相关领域提供参考。Abstract: Solar ultraviolet radiation is one of the main sources of energy input into near space. The study of its radiation characteristics in the mid-atmosphere is an important basis for the study of atmospheric composition and density changes, photochemical reactions and dynamic processes in near space. This paper is based on the special project of HH, using MODTRAN5 radiation transfer model and satellite ozone data, the similarities and differences of the vertical distribution and seasonal evolution of ultraviolet radiation (200~400 nm) in the near space (20~50 km) over 11 major terrain areas in China were compared. The function between ozone content and radiation transmittance is calculated, and the influence of solar zenithal Angle and sun-earth distance on radiation intensity is analyzed. The results show that the vertical distribution profiles of radiative flux in each terrain area are consistent with the vertical distribution profiles of the annual difference, and the radiation characteristics and seasonal evolution in geographically adjacent regions are similar, but there are great differences between different bands of solar UV. The results provide data support for near-space exploration experiments, and provide reference for atmospheric inversion and other related fields.
-
Key words:
- Near space /
- Solar ultraviolet radiation /
- Radiation transfer /
- Radiation transmittance
-
表 1 中国临近空间区域划分
Table 1. Region divisions of China near space
地势阶梯 编号 地形区 经纬范围 第一阶梯
(平均高度大于
4 km)1 青藏高原 80°E-100°E
30°N-40°N2 柴达木盆地 94°E-96°E
37°N-39°N第二阶梯
(平均高度
1~2 km)3 塔里木盆地 80°E-90°E
39°N-40°N4 准噶尔盆地 84°E-86°E
44°N-46°N5 内蒙古高原 110°E-120°E
39°N-41°N6 黄土高原 105°E-110°E
34°N-36°N7 四川盆地 104°E-106°E
29°N-31°N8 云贵高原 100°E-110°E
24°N-28°N第三阶梯
(平均高度小于
500 m)9 东北平原 120°E-135°E
40°N-53°N10 华北平原 115°E-120°E
33°N-40°N11 长江中下游平原 110°E-120°E
29°N-31°N表 2 地球位于近日点与远日点的大气层顶紫外(200~400 nm)辐射流量
Table 2. Ultraviolet radiation flux (200~400 nm) at the top of the atmosphere when the Earth at perihelion and aphelion
地球位置 日期 辐射流量/(W·m–2) 近日点 1月5日 1.1677×10–6 远日点 7月4日 1.0984×10–6 -
[1] 杨秉, 杨健, 李小将, 等. 临近空间飞艇运行环境及其影响[J]. 航天器环境工程, 2008, 25(6): 555-557 doi: 10.3969/j.issn.1673-1379.2008.06.013YANG Bing, YANG Jian, LI Xiaojiang, et al. The operating environment of near-space and its effects on the airship[J]. Spacecraft Environment Engineering, 2008, 25(6): 555-557 doi: 10.3969/j.issn.1673-1379.2008.06.013 [2] 陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013, 10(4): 71-75, 85CHEN Fenggui, CHEN Guangming, LIU Kehua. Analysis of near space environment and its effect[J]. Equipment Environmental Engineering, 2013, 10(4): 71-75, 85 [3] GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70: 20-30 doi: 10.1016/j.enconman.2013.01.007 [4] 李利良, 郭伟民, 何家芳. 国外近空间飞艇的现状和发展[J]. 兵工自动化, 2008, 27(2): 32-34, 48 doi: 10.3969/j.issn.1006-1576.2008.02.014LI Liliang, GUO Weimin, HE Jiafang. Current situation and development of foreign near space airship[J]. Ordnance Industry Automation, 2008, 27(2): 32-34, 48 doi: 10.3969/j.issn.1006-1576.2008.02.014 [5] WANG Z C, HUANG M, QIAN L L, et al. Near-earth space optical observation payload cabin design[J]. Optik, 2019, 185: 138-145 doi: 10.1016/j.ijleo.2019.03.072 [6] 梅笑冬, 孙即霖, 李正强, 等. 中国区临近空间太阳辐射环境研究[J]. 光谱学与光谱分析, 2016, 36(3): 609-617MEI Xiaodong, SUN Jilin, LI Zhengqiang, et al. Radiation environment study of near space in China area[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 609-617 [7] BERK A, CONFORTI P, KENNETT R, et al. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. Baltimore: SPIE, 2014: 90880 H [8] BERK A, CONFORTI P, HAWES F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI. Baltimore: SPIE, 2015: 947217 [9] CHANCE K, KURUCZ R L. An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(9): 1289-1295 doi: 10.1016/j.jqsrt.2010.01.036 [10] ANDREWS D G. An Introduction to Atmospheric Physics[M]. Cambridge: Cambridge University Press, 2010 [11] 杨东军, 方伟, 邱红, 等. 太阳辐射的在轨监测和定标[J]. 发光学报, 2010, 31(5): 676-681YANG Dongjun, FANG Wei, QIU Hong, et al. On-orbit data calibration of FY-3A solar irradiance monitor[J]. Chinese Journal of Luminescence, 2010, 31(5): 676-681 -