留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季强对流活动对东亚低纬电离层不规则体影响的事件分析

尚社平 史建魁 程征伟 王国军 王铮 王霄

尚社平, 史建魁, 程征伟, 王国军, 王铮, 王霄. 夏季强对流活动对东亚低纬电离层不规则体影响的事件分析[J]. 空间科学学报. doi: 10.11728/cjss2022.06.211228135
引用本文: 尚社平, 史建魁, 程征伟, 王国军, 王铮, 王霄. 夏季强对流活动对东亚低纬电离层不规则体影响的事件分析[J]. 空间科学学报. doi: 10.11728/cjss2022.06.211228135
SHANG Sheping, SHI Jiankui, CHENG Zhengwei, WANG Guojun, WANG Zheng, WANG Xiao. Event Analysis of the Influence of Strong Tropospheric Convection in Summer on Low-latitude Ionospheric Irregularities in East Asia (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.06.211228135
Citation: SHANG Sheping, SHI Jiankui, CHENG Zhengwei, WANG Guojun, WANG Zheng, WANG Xiao. Event Analysis of the Influence of Strong Tropospheric Convection in Summer on Low-latitude Ionospheric Irregularities in East Asia (in Chinese). Chinese Journal of Space Science, xxxx, x(x): x-xx doi: 10.11728/cjss2022.06.211228135

夏季强对流活动对东亚低纬电离层不规则体影响的事件分析

doi: 10.11728/cjss2022.06.211228135
基金项目: 国家自然科学基金项目(41474136, 42074201)和中国科学院稳定支持基础研究领域青年团队计划项目(YSBR-018)共同资助
详细信息
    作者简介:

    尚社平:E-mail:shangsp@nssc.ac.cn

  • 中图分类号: P352

Event Analysis of the Influence of Strong Tropospheric Convection in Summer on Low-latitude Ionospheric Irregularities in East Asia

  • 摘要: 利用海南台站和东南亚地区的多种地基和天基观测手段,对2014年7月28日夜间观测到的东亚低纬F区不规则体事件的时空变化及其物理过程进行分析。结果表明,海南台站观测到了罕见的长时间持续的F区电离层不规则体,不同手段观测到的电离层不规则体存在明显的形态差异。不同台站观测到的电离层不规则体活动存在明显的差异。海南台站经度区南北异常峰附近的TEC起伏活动在日落后至午夜附近明显增强,在午夜后明显减弱。C/NOFS卫星轨迹午夜后逐渐接近于磁赤道,且处于较低高度上,几乎总会观测到弱等离子体扰动/泡的发生,与该区域地基观测的弱电离层不规则体活动存在明显的联系。SWARM卫星在黎明海南台站附近经度区仍观测到较强的赤道异常双峰结构,且西侧异常峰区附近仍存在明显的等离子体密度耗空/泡结构。海南台站西侧磁赤道区附近(中南半岛)强对流活动(MCC)激发的重力波种子扰动对东亚低纬区等离子体泡及准周期结构的产生发挥了重要作用。

     

  • 图  1  海南和东南亚台站的位置及观测范围 (7 条斜线为海南 VHF 雷达的观测方向和范围. 圆圈为 GPS 电离层闪烁/TEC 监测仪的观测范围. 斜横线为C/NOFS 卫星轨迹,竖线为 SWARM 卫星轨迹)

    Figure  1.  Location and observation range of Hainan and Southeast Asia stations. (The seven oblique lines are the observation direction and range of Hainan VHF radar. The circles are the observation area of GPS ionospheric scintillation/TEC monitors. The oblique horizontal lines are the trajectories of C/NOFS satellites, and the vertical lines are the trajectories of SWARM satellites)

    图  2  海南 VHF 相干散射雷达在不同观测方位观测到的电离层不规则体回波高度–时间–强度(ATI)及雷达波束的仰角和方位角

    Figure  2.  Altitude-Time-Intensity (ATI) maps of ionospheric irregularity echoes observed by Hainan VHF coherent scatter radar in different observation directions, as well as the elevation and azimuth of the radar beam

    图  3  海南 GPS 电离层闪烁监测仪观测到的电离层幅度闪烁指数S4随时间的变化 (不同曲线为接收到的不同卫星信号)

    Figure  3.  Variation of ionospheric amplitude scintillation index S4 observed by Hainan GPS ionospheric scintillation monitor with time (Different curves are different satellite signals received)

    图  4  海南数字测高仪 DPS4 观测到的等离子体漂移速度、 底部F 层最小虚高hF以及扩展 F 的变化

    Figure  4.  Variation of the plasma drift velocity, the minimum virtual height of bottomside F layer (hF) and spread F observed by Hainan digisonde DPS4

    图  5  当天夜间东南亚 8 个 GPS 站 TEC 起伏的变化及每个站点的纬度和经度(不同曲线为接收到的不同卫星信号)

    Figure  5.  Variation of TEC fluctuations of eight GPS sites in Southeast Asia that night, and the latitude and longitude of each site (Different curves are different satellite signals received)

    图  6  C/NOFS 卫星当天夜间穿磁赤道区时所探测的离子参数(离子温度、速度和密度)和卫星轨道参数(纬度和高度)的变化

    Figure  6.  Variation of ion parameters (temperature, velocity and density) and satellite orbit parameters (latitude and altitude) detected by C/NOFS satellite when it crosses the magnetic equatorial region at night

    图  7  SWARM 星座在黎明附近穿越海南台站两侧的磁赤道区时探测到的等离子体密度/泡结构变化

    Figure  7.  Changes in plasma density / bubble structure detected by SWARM constellation when it crosses the magnetic equatorial region on both sides of Hainan station near dawn

    图  8  2014 年 7 月 28 日东南亚区域附近的 OLR 强度 (OLR强度越小的区域,对应的对流活动越强)

    Figure  8.  OLR intensity map near Southeast Asia on 28 July 2014 (Smaller the OLR intensity, the stronger the corresponding

  • [1] WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466 doi: 10.1029/JA081i031p05447
    [2] TSUNODA R T. Upwelling: a unit of disturbance in equatorial spread F[J]. Progress in Earth and Planetary Science, 2015, 2: 9 doi: 10.1186/s40645-015-0038-5
    [3] HUANG C S. The characteristics and generation mechanism of small-amplitude and large-amplitude ESF irregularities observed by the C/NOFS satellite[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8959-8973 doi: 10.1002/2017JA024041
    [4] TSUNODA R T. On seeding equatorial spread F during solstices[J]. Geophysical Research Letters, 2010, 37(5): L05102 doi: 10.1029/2010GL042576
    [5] CHOI J M, KIL H, KWAK Y S, et al. Periodicity in the occurrence of equatorial plasma bubbles derived from the C/NOFS observations in 2008-2012[J]. Journal of Geophysical Research: Space Physics, 2017, 122(1): 1137-1145 doi: 10.1002/2016JA023528
    [6] TSUNODA R T, NGUYEN T T, LE M H. Effects of tidal forcing, conductivity gradient, and active seeding on the climatology of equatorial spread F over Kwajalein[J]. Journal of Geophysical Research: Space Physics, 2015, 120(1): 632-653 doi: 10.1002/2014JA020762
    [7] TSUNODA R T. On equatorial spread F: establishing a seeding hypothesis[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12303 doi: 10.1029/2010JA015564
    [8] HUANG C S, KELLEY M C. Nonlinear evolution of equatorial spread F: 1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A1): 283-292 doi: 10.1029/95JA02211
    [9] LI G Z, OTSUKA Y, NING B Q, et al. Enhanced ionospheric plasma bubble generation in more active ITCZ[J]. Geophysical Research Letters, 2016, 43(6): 2389-2395 doi: 10.1002/2016GL068145
    [10] PI X, MANNUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophysical Research Letters, 1997, 24(18): 2283-2286 doi: 10.1029/97GL02273
    [11] DE LA BEAUJARDIÈRE O, The C/NOFS Science Definition Team. C/NOFS: a mission to forecast scintillations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(17): 1573-1591 doi: 10.1016/j.jastp.2004.07.030
    [12] XIONG C, STOLLE C, LÜHR H, et al. Scale analysis of equatorial plasma irregularities derived from swarm constellation[J]. Earth, Planets and Space, 2016, 68: 121 doi: 10.1186/s40623-016-0502-5
    [13] HUANG C S, DE LA BEAUJARDIERE O, RODDY P A, et al. Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A11): A11313 doi: 10.1029/2012JA018163
    [14] KELLEY M C, DAO E V. Evidence for gravity wave seeding of convective ionospheric storms possibly initiated by thunderstorms[J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4046-4052 doi: 10.1002/2017JA024707
    [15] WALISER D E, GRAHAM N E, GAUTIER C. Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection[J]. Journal of Climate, 1993, 6(2): 331-353 doi: 10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2
    [16] MCCLURE J P, SINGH S, BAMGBOYE D K, et al. Occurrence of equatorial F region irregularities: evidence for tropospheric seeding[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A12): 29119-29135 doi: 10.1029/98JA02749
    [17] TSUNODA R T. On seeding equatorial spread F: circular gravity waves[J]. Geophysical Research Letters, 2010, 37(10): L10104 doi: 10.1029/2010GL043422
    [18] CARTER B A, TULASI RAM S, YIZENGAW E, et al. Unseasonal development of post-sunset F-region irregularities over southeast Asia on 28 July 2014: 1. Forcing from above?[J]. Progress in Earth and Planetary Science, 2018, 5: 10 doi: 10.1186/s40645-018-0164-y
    [19] AJITH K K, TULASI RAM S, CARTER B A, et al. Unseasonal development of post-sunset F-region irregularities over southeast Asia on 28 July 2014: 2. Forcing from below?[J]. Progress in Earth and Planetary Science, 2018, 5: 60 doi: 10.1186/s40645-018-0218-1
  • 加载中
图(8)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回