Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates
-
摘要: 研究粒径对栽培基质容重、孔性和水吸力的影响,以便为空间植物培养提供栽培基质。采用4种基质,即Profile基质(P)、黑陶粒(B)、白陶粒(W)和蛭石(V),各基质按照不同粒径(< 1 mm,1~2 mm,2~3 mm)组成设置了10种组合(体积百分比),研究测试不同粒径组合基质的基本理化特性、容重、孔性和水吸力。P和B基质的容重约0.70 g·cm–3。P基质含有较多矿质养分离子;增加小粒径基质颗粒占比,不同组合基质的容重、总孔隙度和持水孔隙度均显著增加,但通气孔隙度下降;在10种不同基质组合中,P7(40-60-0)、B8(10-70-20)和W4(10-60-30)分别具有最高的总孔隙度,P8(10-70-20),B1(20-50-30)和W8(10-70-20)具有最高的气水比,P3(50-50-0),B3(50-50-0)和W3(50-50-0)具有最高吸附水量;4种基质的平均总孔隙度和吸水量大小顺序为V>P>B>W。因此,P3(50-50-0)基质和B7(40-60-0)基质具有适中的容重、良好的孔性和较高的水吸力,适用于空间植物栽培。Abstract: To study the effects of different particle sizes on the bulk density, porosity character, water suction of substrates and select suitable substrate combinations for higher plants cultivation in space. Four substrates including profile particle (P), black ceramic particle (B), white ceramic particle (W), and vermiculite (V) were selected, and 10 kinds of particle size combinations (volume percent) are set, in which basic physicochemical character, bulk density, porosity character and water suction were tested. The bulk density of P and B substrates was 0.70 g·cm–3 and there were many minerals in P substrate. The bulk density, Total Porosity (TP) and Water Holding Porosity (WHP) of different substrate combinations increased significantly (p < 0.05) with the increase of proportion of < 1 mm particle size of substrates, but not for Air Porosity (AP). In the 10 kinds of substrate combinations, there were the highest total porosity for P7 (40-60-0) , B8 (10-70-20) and W4 (10-60-30), the highest water air ratio for P8 (10-70-20), B1 (20-50-30) and W8 (10-70-20), the highest adsorption water volume for P3 (50-50-0), B3 (50-50-0) and W3 (50-50-0). The order of average total porosities of 4 kinds of substrates was V> P> B> W. There are moderate bulk density, good porosity character and higher water suction for the P3(50-50-0) and B7 (40-60-0) substrates, which are suitable for plants cultivation in space.
-
Key words:
- Particles size /
- Substrate /
- Bulk density /
- Porosity character /
- Water suction
-
图 1 不同粒径组合P/B/W/V基质孔隙度(对于同一参数TP,AP,WHP,同一张图内标注相同小写字母表示不同组合之间无显著性差异,即p < 0.05,n = 4)
Figure 1. Porosities of different size combinations of P/B/W/V substrates (For the same parameter of TP, AP , WHP, the same lowercase letter marked in the same figure indicates that there are no significant differences between different combinations, p < 0.05, n = 4)
表 1 4种栽培基质不同粒径组合
Table 1. Combinations of different particle size of four kinds of substrates
Combinations P B W V 1 20-50-30 20-50-30 20-50-30 0-100-0 2 30-50-20 30-50-20 30-50-20 3 50-50-0 50-50-0 50-50-0 4 10-60-30 10-60-30 10-60-30 5 20-60-20 20-60-20 20-60-20 6 30-60-10 30-60-10 30-60-10 7 40-60-0 40-60-0 40-60-0 8 10-70-20 10-70-20 10-70-20 9 20-70-10 20-70-10 20-70-10 10 30-70-0 30-70-0 30-70-0 注 每组数字表示三种粒径(<1 mm, 1~2 mm, 2~3 mm)的体积百分比。 表 2 不同栽培基质基本物化特性
Table 2. Physical-chemical characteristics of four kinds of substrates
Substrates pH EC/
(μS·cm–1)Heavy metal content/(mg·kg–1) Cd Cr Pb Hg As P 6.31 372.6 0.113 187.5 10.8 0.105 1.62 B 9.34 121.4 0.079 140.0 51.8 0.022 1.94 W 7.62 224.2 0.021 41.5 5.8 0.108 1.32 V 7.64 177.3 0.021 226.0 3.3 0.134 1.44 表 3 不同粒径组合基质的容重比较 (单位g·cm–3)
Table 3. Comparisons of bulk density of different size combinations of substrates (Unit g·cm–3)
Combinations P B W V 1 0.672±0.014 bc B 0.617±0.014 de C 1.229±0.035 c A - 2 0.689±0.018 ab B 0.693±0.044 abc B 1.249±0.011 abc A - 3 0.692±0.013 a C 0.738±0.008 abc B 1.241±0.011 bc A - 4 0.666±0.005 c B 0.604±0.040 de C 1.236±0.023 bc A - 5 0.687±0.005 ab B 0.639±0.036 cd B 1.249±0.019 abc A - 6 0.687±0.006 ab B 0.681±0.044 bc B 1.257±0.007 abc A - 7 0.692±0.006 a B 0.739±0.042 a B 1.263±0.011 ab A - 8 0.683±0.006 abc B 0.573±0.025 e C 1.244±0.017 abc A - 9 0.691±0.008 a B 0.649±0.034 bcd C 1.253±0.012 abc A - 10 0.693±0.014 a B 0.701±0.026 ab B 1.274±0.021 a A - Average 0.685±0.010 B 0.663±0.031 B 1.250±0.017 A 0.385±0.013 C* 注 每一栏内标注相同小写字母表示不同组合之间无显著差异(p < 0.05),每一行内标注相同大写字母表示同一组合不同基质之间无显著差异(p < 0.05),重复数n = 3,*表示1~2 mm 粒径蛭石的容重(即组合0-100-0)。 表 4 不同粒径组合基质的容重、孔性及水吸力回归分析
Table 4. Regression analyses of bulk density, total porosity, and water suction of different size combinations of substrates
Regression analyses P B W Bulk density Equation Y=0.00117X1+0.00093X2+
0.00051X3+0.591Y=0.00223X1–0.000213X2–
0.0023X3+0.657Y=–0.000085X1+0.000942X2–
0.000832X3+1.209R2 0.75 0.89 0.72 F (Sig.) 5.792 (0.033)* 26.454 (0.001)** 5.194 (0.042)* Total porosity Equation Y=–0.0654X1+0.0439X2–
0.1066X3+64.699Y=0.01983X1+0.1519X2+
0.2169X3+29.673Y=–0.3049X1+0.01065X2-
0.1998X3+68.942R2 0.42 0.53 0.87 F (Sig.) 1.453 (0.318) 2.264 (0.181) 13.331 (0.005)** Water air ratio Equation Y=–0.00387X1+0.000567X2+
0.00193X3+0.302Y=0.0135X1–0.000657X2+
0.0228X3–0.429Y=0.00029X1+0.00718X2+
0.00611X3–0.227R2 0.79 0.77 0.90 F (Sig.) 7.402 (0.019)* 6.636 (0.025)* 18.853 (0.002)** Water suction Equation Y=1.052X1+0.0486X2+
0.782X3–14.202Y=0.611X1+0.0368X2+
0.220X3+6.806Y=0.239X1–0.177X2+
0.0141X3+23.412R2 0.84 0.85 0.83 F (Sig.) 10.465 (0.008)** 11.158 (0.007)** 9.988 (0.009)** 注 X1,X2,X3 分别表示三种粒径(<1 mm, 1~2 mm和2~3 mm)的体积百分比。*表示在p < 0.05下有显著性差异,**表示在p < 0.01条件下有极显著性差异。 表 5 不同粒径组合基质的总孔隙度值、持水孔隙度值和通气孔隙度值大小顺序
Table 5. Order of porosities of different size combinations of substrates
Order TP WHP AP P B W P B W P B W 1 P7 B8 W4 P7 B3 W3 P8 B1 W8 2 P8 B9 W10 P3 B6 W6 P4 B2 W10 3 P9 B6 W8 P9 B10 W4 P1 B8 W4 4 P6 B2 W9 P10 B7 W7 P5 B4 W9 5 P5 B10 W5 P2 B9 W5 P6 B9 W1 6 P3 B1 W6 P6 B5 W2 P2 B5 W5 7 P2 B7 W1 P5 B8 W10 P10 B10 W2 8 P10 B3 W7 P1 B4 W9 P9 B6 W6 9 P4 B5 W2 P4 B4 W1 P7 B7 W7 10 P1 B4 W3 P8 B1 W8 P3 B3 W3 注 TP为总孔隙度,WHP为持水孔隙度,AP为通气孔隙度。 表 6 不同粒径组合基质的气水比值大小顺序
Table 6. Order of water air ratios of different size combinations of substrates
Order Water air ratio P B W 1 P8 B1 W8 2 P4 B2 W4 3 P1 B8 W10 4 P5 B4 W9 5 P6 B9 W1 6 P2 B6 W5 7 P10 B5 W2 8 P9 B10 W6 9 P7 B7 W7 10 P3 B3 W3 表 7 不同粒径组合基质吸水量(单位 mL)
Table 7. Adsorption water volume of different size combinations of substrates (Unit mL)
Combinations P B W V 1 35.33±2.52 a A 26.67±7.77 cde AB 18.67±3.06 b B - 2 36.67±1.15 a A 33.67±1.53 ab A 24.67±3.06 a B - 3 37.00±2.00 a A 37.67±4.51 a A 25.00±2.65 a B - 4 18.33±0.58 e A 18.33±0.58 f A 15.33±1.15 bc B - 5 26.67±1.15 d A 27.33±3.06 bcde A 15.33±3.06 bc B - 6 30.67±3.06 bc A 32.00±.00 abc A 22.67±1.53 a B - 7 31.33±1.15 b A 32.67±2.08 abc A 22.67±1.15 a B - 8 21.33±1.15 e A 24.67±4.16 def A 14.33±1.53 c B - 9 27.33±1.15 d A 23.00±5.57 ef AB 16.67±2.31 bc B - 10 29.00±3.61 bcd A 30.33±3.21 bcd A 17.33±1.15 bc B - Average 29.37±1.75 B 28.63±3.25 B 19.27±2.06 C 37.00±2.65 A* 注 每一栏内标注相同小写字母表示不同组合之间无显著性差异(p < 0.05),每一行内标注相同大写字母表示同一组合不同基质之间无显著性差异(p < 0.05),重复数n = 3,*表示1~2 mm 粒径蛭石的吸水量(即组合0-100-0)。 -
[1] WHEELER R M, STUTTE G W, YORIO N C, et al. Plant growth and human life support for space travel[R]. In: PESSARAKLI M (ed), Handbook of Plant and Crop Physiology, 2 nd ed. New York: Marcel Dekker Inc, 2001, 925-941 [2] ZABEL P, BAMSEY M, SCHUBERT D, et al. Review and analysis of over 40 years of space plant growth systems[J]. Life Sciences in Space Research, 2016, 10: 1-16 doi: 10.1016/j.lssr.2016.06.004 [3] MORROW R C, RICHTER, R C, TELLEZ G. A new plant habitat facility for the ISS[R]. 46th International Conference on Environmental Systems, Vienna, Austria. 2016, No. ICES–2016-320 [4] 陈瑜, 鹿金颖, 李华盛, 等. 空间环境和模拟微重力环境下番茄试管苗的开花结实实验[J]. 航天医学与医学工程, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009CHEN Yu, LU Jinying, LI Huasheng, et al. Experiments of tomato plantlet flowering and fructification in space and simulated microgravity environments[J]. Space Medicine & Medical Engineering, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009 [5] In Chinese (唐永康, 吴志强, 董文平, 等. 空间植物栽培技术分析与思考[J]. 植物生理学报, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012TANG Yongkang, WU Zhiqiang, DONG Wenping, et al. Analysis and review on plant cultivation techniques in space[J]. Plant Physiology Journal, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012 [6] HOEHN A, SCOVAZZO P and STODIECK L S. Microgravity root zone hydration systems[R]. SAE Technical Paper Series, 2000, 2000-01-2510 [7] STEINBERG S L, KLUITENBERG G J, JONES S B, et al. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium[J]. Journal of the American Society for Horticulture Science, 2005, 130(5): 767-774 doi: 10.21273/JASHS.130.5.767 [8] SHEN Y Z, GUO S S, ZHAO P S, et al. Research on lettuce growth technology onboard Chinese Tiangong Ⅱ Spacelab[J]. Acta Astronautica, 2018, 144: 97-102 doi: 10.1016/j.actaastro.2017.11.007 [9] 郭双生. 空间高等植物栽培根部基质的筛选研究[J]. 航天医学与医学工程, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004GUO Shuangsheng. Selection of root-zone media for higher plant cultivation in Space[J]. Space Medicine & Medical Engineering, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004 [10] ADAMS C, JACOBSON A, BUGBEE B. Ceramic aggregate sorption and desorption chemistry: implications for use as a component of soilless media[J]. Journal of Plant Nutrition, 2014, 37: 1345-1357 doi: 10.1080/01904167.2013.837921 [11] 高坚, 唐永康, 吴志强, 等. 空间栽培基质筛选及对莴苣生长的影响[J]. 航天医学与医学工程, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011GAO Jian, TANG Yongkang, WU Zhiqiang, et al. Selections and effects of substrates on lettuce growth in CELSS[J]. Space Medicine & Medical Engineering, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011 [12] 秦新惠. 无土栽培技术[M]. 重庆: 重庆大学出版社, 2016: 46-48QIN Xinhui. Soilless Cultivation Techniques[M]. Chongqing: Chongqing University Press, 2016: 46-48 -