留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同粒径组合对植物栽培基质容重及孔性和水吸力的影响

唐永康 沈韫赜 艾为党 吴志强 毛瑞鑫 吴浩 胡伟 冯红旗

唐永康, 沈韫赜, 艾为党, 吴志强, 毛瑞鑫, 吴浩, 胡伟, 冯红旗. 不同粒径组合对植物栽培基质容重及孔性和水吸力的影响[J]. 空间科学学报, 2022, 42(6): 1161-1170. doi: 10.11728/cjss2022.06.220125009
引用本文: 唐永康, 沈韫赜, 艾为党, 吴志强, 毛瑞鑫, 吴浩, 胡伟, 冯红旗. 不同粒径组合对植物栽培基质容重及孔性和水吸力的影响[J]. 空间科学学报, 2022, 42(6): 1161-1170. doi: 10.11728/cjss2022.06.220125009
TANG Yongkang, SHEN Yunze, AI Weidang, WU Zhiqiang, MAO Ruixin, WU Hao, HU Wei, FENG Hongqi. Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1161-1170 doi: 10.11728/cjss2022.06.220125009
Citation: TANG Yongkang, SHEN Yunze, AI Weidang, WU Zhiqiang, MAO Ruixin, WU Hao, HU Wei, FENG Hongqi. Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1161-1170 doi: 10.11728/cjss2022.06.220125009

不同粒径组合对植物栽培基质容重及孔性和水吸力的影响

doi: 10.11728/cjss2022.06.220125009
基金项目: 人因工程重点实验室预先研究项目(GJSD18001和6142222210701)
详细信息
    作者简介:

    唐永康:E-mail:yktang@126.com

    通讯作者:

    吴志强,E-mail:wzqacc@126.com

  • 中图分类号: V524

Effects of Different Particle Sizes on the Bulk Density, Porosity Character, Water Suction of Substrates

  • 摘要: 研究粒径对栽培基质容重、孔性和水吸力的影响,以便为空间植物培养提供栽培基质。采用4种基质,即Profile基质(P)、黑陶粒(B)、白陶粒(W)和蛭石(V),各基质按照不同粒径(< 1 mm,1~2 mm,2~3 mm)组成设置了10种组合(体积百分比),研究测试不同粒径组合基质的基本理化特性、容重、孔性和水吸力。P和B基质的容重约0.70 g·cm–3。P基质含有较多矿质养分离子;增加小粒径基质颗粒占比,不同组合基质的容重、总孔隙度和持水孔隙度均显著增加,但通气孔隙度下降;在10种不同基质组合中,P7(40-60-0)、B8(10-70-20)和W4(10-60-30)分别具有最高的总孔隙度,P8(10-70-20),B1(20-50-30)和W8(10-70-20)具有最高的气水比,P3(50-50-0),B3(50-50-0)和W3(50-50-0)具有最高吸附水量;4种基质的平均总孔隙度和吸水量大小顺序为V>P>B>W。因此,P3(50-50-0)基质和B7(40-60-0)基质具有适中的容重、良好的孔性和较高的水吸力,适用于空间植物栽培。

     

  • 图  1  不同粒径组合P/B/W/V基质孔隙度(对于同一参数TP,AP,WHP,同一张图内标注相同小写字母表示不同组合之间无显著性差异,即p < 0.05,n = 4)

    Figure  1.  Porosities of different size combinations of P/B/W/V substrates (For the same parameter of TP, AP , WHP, the same lowercase letter marked in the same figure indicates that there are no significant differences between different combinations, p < 0.05, n = 4)

    图  2  不同粒径P/B/W/V基质气水比

    Figure  2.  Water air ratios of different size combinations of P/B/W/V substrates

    图  3  不同粒径P/B/W/V基质水吸力高度

    Figure  3.  Water suction heights of different size combinations of P/B/W/V substrates

    表  1  4种栽培基质不同粒径组合

    Table  1.   Combinations of different particle size of four kinds of substrates

    CombinationsPBWV
    120-50-3020-50-3020-50-300-100-0
    230-50-2030-50-2030-50-20
    350-50-050-50-050-50-0
    410-60-3010-60-3010-60-30
    520-60-2020-60-2020-60-20
    630-60-1030-60-1030-60-10
    740-60-040-60-040-60-0
    810-70-2010-70-2010-70-20
    920-70-1020-70-1020-70-10
    1030-70-030-70-030-70-0
     每组数字表示三种粒径(<1 mm, 1~2 mm, 2~3 mm)的体积百分比。
    下载: 导出CSV

    表  2  不同栽培基质基本物化特性

    Table  2.   Physical-chemical characteristics of four kinds of substrates

    SubstratespHEC/
    (μS·cm–1)
    Heavy metal content/(mg·kg–1)
    CdCrPbHgAs
    P6.31372.60.113187.510.80.1051.62
    B9.34121.40.079140.051.80.0221.94
    W7.62224.20.02141.55.80.1081.32
    V7.64177.30.021226.03.30.1341.44
    下载: 导出CSV

    表  3  不同粒径组合基质的容重比较 (单位g·cm–3

    Table  3.   Comparisons of bulk density of different size combinations of substrates (Unit g·cm–3)

    CombinationsPBWV
    10.672±0.014 bc B0.617±0.014 de C1.229±0.035 c A
    20.689±0.018 ab B0.693±0.044 abc B1.249±0.011 abc A
    30.692±0.013 a C0.738±0.008 abc B1.241±0.011 bc A
    40.666±0.005 c B0.604±0.040 de C1.236±0.023 bc A
    50.687±0.005 ab B0.639±0.036 cd B1.249±0.019 abc A
    60.687±0.006 ab B0.681±0.044 bc B1.257±0.007 abc A
    70.692±0.006 a B0.739±0.042 a B1.263±0.011 ab A
    80.683±0.006 abc B0.573±0.025 e C1.244±0.017 abc A
    90.691±0.008 a B0.649±0.034 bcd C1.253±0.012 abc A
    100.693±0.014 a B0.701±0.026 ab B1.274±0.021 a A
    Average0.685±0.010 B0.663±0.031 B1.250±0.017 A0.385±0.013 C*
     每一栏内标注相同小写字母表示不同组合之间无显著差异(p < 0.05),每一行内标注相同大写字母表示同一组合不同基质之间无显著差异(p < 0.05),重复数n = 3,*表示1~2 mm 粒径蛭石的容重(即组合0-100-0)。
    下载: 导出CSV

    表  4  不同粒径组合基质的容重、孔性及水吸力回归分析

    Table  4.   Regression analyses of bulk density, total porosity, and water suction of different size combinations of substrates

    Regression analysesPBW
    Bulk density Equation Y=0.00117X1+0.00093X2+
    0.00051X3+0.591
    Y=0.00223X1–0.000213X2
    0.0023X3+0.657
    Y=–0.000085X1+0.000942X2
    0.000832X3+1.209
    R2 0.75 0.89 0.72
    F (Sig.) 5.792 (0.033)* 26.454 (0.001)** 5.194 (0.042)*
    Total porosity Equation Y=–0.0654X1+0.0439X2
    0.1066X3+64.699
    Y=0.01983X1+0.1519X2+
    0.2169X3+29.673
    Y=–0.3049X1+0.01065X2-
    0.1998X3+68.942
    R2 0.42 0.53 0.87
    F (Sig.) 1.453 (0.318) 2.264 (0.181) 13.331 (0.005)**
    Water air ratio Equation Y=–0.00387X1+0.000567X2+
    0.00193X3+0.302
    Y=0.0135X1–0.000657X2+
    0.0228X3–0.429
    Y=0.00029X1+0.00718X2+
    0.00611X3–0.227
    R2 0.79 0.77 0.90
    F (Sig.) 7.402 (0.019)* 6.636 (0.025)* 18.853 (0.002)**
    Water suction Equation Y=1.052X1+0.0486X2+
    0.782X3–14.202
    Y=0.611X1+0.0368X2+
    0.220X3+6.806
    Y=0.239X1–0.177X2+
    0.0141X3+23.412
    R2 0.84 0.85 0.83
    F (Sig.) 10.465 (0.008)** 11.158 (0.007)** 9.988 (0.009)**
     X1X2X3 分别表示三种粒径(<1 mm, 1~2 mm和2~3 mm)的体积百分比。*表示在p < 0.05下有显著性差异,**表示在p < 0.01条件下有极显著性差异。
    下载: 导出CSV

    表  5  不同粒径组合基质的总孔隙度值、持水孔隙度值和通气孔隙度值大小顺序

    Table  5.   Order of porosities of different size combinations of substrates

    OrderTPWHPAP
    PBWPBWPBW
    1P7B8W4P7B3W3P8B1W8
    2P8B9W10P3B6W6P4B2W10
    3P9B6W8P9B10W4P1B8W4
    4P6B2W9P10B7W7P5B4W9
    5P5B10W5P2B9W5P6B9W1
    6P3B1W6P6B5W2P2B5W5
    7P2B7W1P5B8W10P10B10W2
    8P10B3W7P1B4W9P9B6W6
    9P4B5W2P4B4W1P7B7W7
    10P1B4W3P8B1W8P3B3W3
     TP为总孔隙度,WHP为持水孔隙度,AP为通气孔隙度。
    下载: 导出CSV

    表  6  不同粒径组合基质的气水比值大小顺序

    Table  6.   Order of water air ratios of different size combinations of substrates

    OrderWater air ratio
    PBW
    1P8B1W8
    2P4B2W4
    3P1B8W10
    4P5B4W9
    5P6B9W1
    6P2B6W5
    7P10B5W2
    8P9B10W6
    9P7B7W7
    10P3B3W3
    下载: 导出CSV

    表  7  不同粒径组合基质吸水量(单位 mL)

    Table  7.   Adsorption water volume of different size combinations of substrates (Unit mL)

    CombinationsPBWV
    135.33±2.52 a A26.67±7.77 cde AB18.67±3.06 b B
    236.67±1.15 a A33.67±1.53 ab A24.67±3.06 a B
    337.00±2.00 a A37.67±4.51 a A25.00±2.65 a B
    418.33±0.58 e A18.33±0.58 f A15.33±1.15 bc B
    526.67±1.15 d A27.33±3.06 bcde A15.33±3.06 bc B
    630.67±3.06 bc A32.00±.00 abc A22.67±1.53 a B
    731.33±1.15 b A32.67±2.08 abc A22.67±1.15 a B
    821.33±1.15 e A24.67±4.16 def A14.33±1.53 c B
    927.33±1.15 d A23.00±5.57 ef AB16.67±2.31 bc B
    1029.00±3.61 bcd A30.33±3.21 bcd A17.33±1.15 bc B
    Average29.37±1.75 B28.63±3.25 B19.27±2.06 C37.00±2.65 A*
     每一栏内标注相同小写字母表示不同组合之间无显著性差异(p < 0.05),每一行内标注相同大写字母表示同一组合不同基质之间无显著性差异(p < 0.05),重复数n = 3,*表示1~2 mm 粒径蛭石的吸水量(即组合0-100-0)。
    下载: 导出CSV
  • [1] WHEELER R M, STUTTE G W, YORIO N C, et al. Plant growth and human life support for space travel[R]. In: PESSARAKLI M (ed), Handbook of Plant and Crop Physiology, 2 nd ed. New York: Marcel Dekker Inc, 2001, 925-941
    [2] ZABEL P, BAMSEY M, SCHUBERT D, et al. Review and analysis of over 40 years of space plant growth systems[J]. Life Sciences in Space Research, 2016, 10: 1-16 doi: 10.1016/j.lssr.2016.06.004
    [3] MORROW R C, RICHTER, R C, TELLEZ G. A new plant habitat facility for the ISS[R]. 46th International Conference on Environmental Systems, Vienna, Austria. 2016, No. ICES–2016-320
    [4] 陈瑜, 鹿金颖, 李华盛, 等. 空间环境和模拟微重力环境下番茄试管苗的开花结实实验[J]. 航天医学与医学工程, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009

    CHEN Yu, LU Jinying, LI Huasheng, et al. Experiments of tomato plantlet flowering and fructification in space and simulated microgravity environments[J]. Space Medicine & Medical Engineering, 2013, 26(3): 239-242 doi: 10.16289/j.cnki.1002-0837.2013.03.009
    [5] In Chinese (唐永康, 吴志强, 董文平, 等. 空间植物栽培技术分析与思考[J]. 植物生理学报, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012

    TANG Yongkang, WU Zhiqiang, DONG Wenping, et al. Analysis and review on plant cultivation techniques in space[J]. Plant Physiology Journal, 2020, 56(1): 1-10 doi: 10.13592/j.cnki.ppj.2019.0012
    [6] HOEHN A, SCOVAZZO P and STODIECK L S. Microgravity root zone hydration systems[R]. SAE Technical Paper Series, 2000, 2000-01-2510
    [7] STEINBERG S L, KLUITENBERG G J, JONES S B, et al. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium[J]. Journal of the American Society for Horticulture Science, 2005, 130(5): 767-774 doi: 10.21273/JASHS.130.5.767
    [8] SHEN Y Z, GUO S S, ZHAO P S, et al. Research on lettuce growth technology onboard Chinese Tiangong Ⅱ Spacelab[J]. Acta Astronautica, 2018, 144: 97-102 doi: 10.1016/j.actaastro.2017.11.007
    [9] 郭双生. 空间高等植物栽培根部基质的筛选研究[J]. 航天医学与医学工程, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004

    GUO Shuangsheng. Selection of root-zone media for higher plant cultivation in Space[J]. Space Medicine & Medical Engineering, 2004, 17(2): 93-97 doi: 10.3969/j.issn.1002-0837.2004.02.004
    [10] ADAMS C, JACOBSON A, BUGBEE B. Ceramic aggregate sorption and desorption chemistry: implications for use as a component of soilless media[J]. Journal of Plant Nutrition, 2014, 37: 1345-1357 doi: 10.1080/01904167.2013.837921
    [11] 高坚, 唐永康, 吴志强, 等. 空间栽培基质筛选及对莴苣生长的影响[J]. 航天医学与医学工程, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011

    GAO Jian, TANG Yongkang, WU Zhiqiang, et al. Selections and effects of substrates on lettuce growth in CELSS[J]. Space Medicine & Medical Engineering, 2020, 33(5): 440-448 doi: 10.16289/j.cnki.1002-0837.2020.05.011
    [12] 秦新惠. 无土栽培技术[M]. 重庆: 重庆大学出版社, 2016: 46-48

    QIN Xinhui. Soilless Cultivation Techniques[M]. Chongqing: Chongqing University Press, 2016: 46-48
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-06-21
  • 修回日期:  2022-10-16
  • 网络出版日期:  2022-11-30

目录

    /

    返回文章
    返回