Simulation on the Impact of the Sudden Process of Solar Activity on the Near Space Atmosphere
-
摘要: 空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、Kp及Ap指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。Abstract: Space weather has important effects on the Earth and near-Earth space, while large space weather events have different effects on the dynamics and composition of the pelagic atmosphere. The Whole Atmosphere Community Climate Model (WACCM) is used to simulate the effects of three types of events on atmospheric parameters of high altitude atmospheric parameters in the near space, atmospheric temperature, density and ozone through F10.7, ion production rate, Kp, and Ap index settings, respectively, for solar flares, solar protons and geomagnetic storms. The results show that flare events have the most significant effect on the temperature and density of the near space atmosphere among the three types of events, and the increase in stratospheric atmospheric temperature is caused by the photochemical reaction caused by stratospheric ozone absorption of ultraviolet radiation caused by the enhancement of radiation during the solar flare event, the increase of temperature in stratosphere and low thermosphere is roughly 2~3 K, and the relative density of the lower thermosphere increases within 6%. Solar proton events and geomagnetic storm events mainly affect the low thermosphere, but solar proton events and magnetic storm events disturb the temperature of the lower thermosphere by no more than 1 K.
-
Key words:
- Solar activity /
- Near space /
- Modeling /
- Response characteristics
-
表 1 离子产生率数据来源
Table 1. Introduction of data source of ion production rate
Years Source of Protons 1963-1973 IMP 1~7 1974-1993 IMP 8 1994-2005 GOES 7,8,10,11 2006-2012 GOES 11,13 表 2 输入参数设置(模拟时间: 2015年5月10-14日)
Table 2. Input parameter setting (Simulation time: 10 to 14 May 2015)
组别 F10.7 F10.7 a Kp Ap isn IP / (cm–3·s–1) 第一组
太阳耀斑事件190 70 1 3 150 0 第二组
地磁暴事件70 70 7 150 20 0 第三组
太阳质子事件70 70 1 3 20 随气压变化函数,采用真实事件数据输入 第四组
平静对照组70 70 1 3 20 0 注 IP为 Ion Production。 -
[1] LANZEROTTI L J. Space weather effects on technologies[J]. Space Weather, 2001, 125: 11-22 [2] WOODS T N, EPARVIER F G, FONTENLA J, et al. Solar irradiance variability during the October 2003 solar storm period[J]. Geophysical Research Letters, 2004, 31(10): L10802 [3] THIÉBLEMONT R, BEKKI S, MARCHAND M, et al. Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-Day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8883-8896 doi: 10.1029/2017JD027789 [4] BAG T. Impact of M-solar flare-induced solar proton event on mesospheric Na layer over Utah (41.8°N, 112°W)[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8808-8815 doi: 10.1002/2017JA024001 [5] DENTON M H, KIVI R, ULICH T, et al. Northern hemisphere stratospheric ozone depletion caused by solar proton events: the role of the polar vortex[J]. Geophysical Research Letters, 2018, 45(4): 2115-2124 doi: 10.1002/2017GL075966 [6] PETTIT J, RANDALL C E, MARSH D R, et al. Effects of the September 2005 solar flares and solar proton events on the middle atmosphere in WACCM[J]. Journal of Geophysical Research: Space Physics, 2018, 123(7): 5747-5763 doi: 10.1029/2018JA025294 [7] GAN Q, DU J, FOMICHEV V I, et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979–2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002–2015) TIMED/SABER observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4801-4818 doi: 10.1002/2016JA023564 [8] JACKMAN C H, MCPETERS R D, LABOW G J, et al. Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event[J]. Geophysical Research Letters, 2001, 28(15): 2883-2886 doi: 10.1029/2001GL013221 [9] JACKMAN C H, DELAND M T, LABOW G J, et al. Neutral atmospheric influences of the solar proton events in October-November 2003[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09S27 [10] JACKMAN C H, MARSH D R, VITT F M, et al. Short- and medium-term atmospheric constituent effects of very large solar proton events[J]. Atmospheric Chemistry and Physics, 2008, 8(3): 765-785 doi: 10.5194/acp-8-765-2008 [11] JACKMAN C H, RANDALL C E, HARVEY V L, et al. Middle atmospheric changes caused by the January and March 2012 solar proton events[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 1025-1038 doi: 10.5194/acp-14-1025-2014 [12] BARDEEN C G, MARSH D R, JACKMAN C H, et al. Impact of the January 2012 solar proton event on polar mesospheric clouds[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 9165-9173 doi: 10.1002/2016JD024820 [13] KOVÁCS T, PLANE J M C, FENG W H, et al. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4)-WACCM-SIC and WACCM-rSIC[J]. Geoscientific Model Development, 2016, 9(9): 3123-3136 doi: 10.5194/gmd-9-3123-2016 [14] LIU J, LIU H L, WANG W B, et al. First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008[J]. Journal of Geophysical Research: Space Physics, 2018, 123(2): 1534-1553 doi: 10.1002/2017JA025010 [15] PEDATELLA N M, CHAU J L, VIERINEN J, et al. Solar flare effects on 150 km echoes observed over jicamarca: WACCM-X simulations[J]. Geophysical Research Letters, 2019, 46(20): 10951-10958 doi: 10.1029/2019GL084790 [16] SI Y D, LI S S, CHEN L F, et al. Validation and spatiotemporal distribution of GEOS-5–based planetary boundary layer height and relative humidity in China[J]. Advances in Atmospheric Sciences, 2018, 35(4): 479-492 doi: 10.1007/s00376-017-6275-3 [17] VITT F M, JACKMAN C H. A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D3): 6729-6739 doi: 10.1029/95JD03386 [18] JACKMAN C H, MARSH D R, VITT F M, et al. Long-term middle atmospheric influence of very large solar proton events[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D11): D11304 doi: 10.1029/2008JD011415 [19] 潘晨, 朱彬, 施春华, 等. SD-WACCM模式对平流层化学组分的模拟研究[J]. 气象科学, 2015, 35(1): 9-16 doi: 10.3969/2013jms.0059PAN Chen, ZHU Bin, SHI Chunhua, et al. SD-WACCM modeling study on the chemical components in the stratosphere[J]. Journal of the Meteorological Sciences, 2015, 35(1): 9-16 doi: 10.3969/2013jms.0059 [20] PECK E D, RANDALL C E, HARVEY V L, et al. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(2): 806-822 doi: 10.1002/2014MS000387 [21] MARSH D R, MILLS M J, KINNISON D E, et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM)[J]. Journal of Climate, 2013, 26(19): 7372-7391 doi: 10.1175/JCLI-D-12-00558.1 [22] 刘毅, 刘传熙. 利用WACCM-3模式对平流层动力、热力场及微量化学成分季节变化的数值模拟研究[J]. 空间科学学报, 2009, 29(6): 580-590 doi: 10.11728/cjss2009.06.580LIU Yi, LIU Chuanxi. Simulation studies on seasonal variations of the stratospheric dynamics and trace gases using coupled chemistry-climate model WACCM-3[J]. Chinese Journal of Space Science, 2009, 29(6): 580-590 doi: 10.11728/cjss2009.06.580 [23] SOLOMON S C, QIAN L Y. Solar extreme-ultraviolet irradiance for general circulation models[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A10): A10306 doi: 10.1029/2005JA011160 [24] LEAN J, ROTTMAN G, HARDER J, et al. SORCE contributions to new understanding of global change and solar variability[J]. Solar Physics, 2005, 230(1/2): 27-53 [25] 全林, 薛军琛, 胡小工, 等. 中国区域GPS单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3017 doi: 10.6038/cjg2021P0331QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3017 doi: 10.6038/cjg2021P0331 [26] 张健恺. 气候变化对北半球臭氧总量变化影响的研究[D]. 兰州: 兰州大学, 2016ZHANG Jiankai. A Study of Climate Change Impact on Total Ozone Column over the Northern Hemisphere[D]. Lanzhou: Lanzhou University, 2016 [27] 万凌峰. 夏季北半球平流层臭氧对太阳紫外准11年循环的响应及机制[D]. 南京: 南京信息工程大学, 2016WAN Lingfeng. Response and Related Mechanism of Stratospheric Ozone in the Summer Northern Hemisphere to the Quasi-11 Years Ultraviolet Cycle of the Sun[D]. Nanjing: Nanjing University of Information Science and Technology, 2016 [28] 陈文, 黄荣辉. 准定常行星被对大气中臭氧输运的动力作用[J]. 大气科学, 1995, 19(5): 513-524 doi: 10.3878/j.issn.1006-9895.1995.05.01CHEN Wen, HUANG Ronghui. The dynamics of planetary wave transport on ozone in the atmosphere[J]. Scientia Atmospherica Sinica, 1995, 19(5): 513-524 doi: 10.3878/j.issn.1006-9895.1995.05.01 [29] PIKULINA P, MIRONOVA I, ROZANOV E, et al. September 2017 solar flares effect on the middle atmosphere[J]. Remote Sensing, 2022, 14(11): 2560 doi: 10.3390/rs14112560 -