Discovering the Sky at the Longest Wavelength Mission−A Pathfinder for Exploring the Cosmic Dark Ages
-
摘要: 低频射电探测任务构想——鸿蒙计划旨在利用多颗卫星绕月编队形成超长波天文观测阵列,在月球背面开展空间低频射电天文探测。其科学目标是高精度测量全天射电频谱,揭示宇宙黑暗时代与黎明的演化历史;实现首次高分辨率超长波巡天,打开最后一个电磁窗口;观测太阳和行星超长波活动,揭示空间环境相互作用规律。该任务将获得超长波频段全天空图像,获取超长波波段天文射电源的强度、频谱、分布等信息。这些科学数据对于探索宇宙黑暗时代和黎明时代、研究银河系星际介质、宇宙线起源与传播、河外射电星系、类星体和星系团的演化、太阳活动与行星磁场等,具有重要的科学价值。Abstract: In this paper we describe a low frequency radio astronomy mission known as the DSL project (also “Hongmeng Project” in Chinese). It is an interferometer array made up of a formation of satellites in a lunar orbit, which makes ultralong wavelength observations in the part of orbit behind the Moon. The scientific objectives include making high precision measurement of the global spectrum, probing the cosmic dawn and dark ages; realizing ultra-long wavelength sky survey with a high resolution for the first time, opening up the last unexplored electromagnetic window; monitoring the radio activity of the Sun and planets, analyzing their interactions in the interplanetary space. The mission will obtain the whole sky map in the ultralong wavelength, and provide information on the intensity, spectrum and distribution of ultralong wavelength radio sources. It has great scientific value for the exploration of the cosmic dark ages and cosmic dawn, and investigations on the interstellar medium, origin and propagation of cosmic rays, extragalactic radio galaxies and quasars, evolution of clusters and groups of galaxies, solar activities, and planetary magnetic field.
-
表 1 有效载荷配置
Table 1. Payloads
卫星 载荷名称 数量 高频子星 高频频谱仪 1 星间通信测距同步系统 1 星间测角系统 1 低频子星 低频干涉成像谱仪 8 星间通信测距同步系统 8 星间测角系统 8 主星 相关处理器 1 定标系统 1 星间通信测距同步系统 1 星间测角系统 1 表 2 高频频谱仪技术指标
Table 2. Parameters of the high frequency band spectrometer
技术指标 设计要求 天线 尺寸小、波瓣与频率无关、响应平坦 探测频率 30~120 MHz 探测灵敏度 优于0.1 K @ 80 MHz
(1 MHz带宽10 min积分时间)探测动态范围 80 dB 频谱分辨率 ≤100 kHz EMI/干扰幅度 ≤ 3 nV·Hz1/2 EMI/宽频干扰 30~120 MHz内不存在带宽
≥ 2 MHz的宽频干扰EMI/单频点干扰 30 ~ 120 MHz内的占比≤5% 表 3 低频干涉成像谱仪技术指标
Table 3. Parameters of the low frequency band interferometric imaging spectrometer
技术指标 设计要求 天线 2.5 m可展开三正交单极子 探测频率 0.1 ~ 30 MHz 空间分辨率 优于0.18° @ 1 MHz,0.012° @ 30 MHz 谱分辨点数 优于8192 探测灵敏度 优于1000 K @ 30 MHz
(1 MHz带宽,10 min积分时间)EMI 优于≤ 3 nV·Hz1/2(0.1~30 MHz,90%观测频段)
优于 9 nV·Hz1/2(0.1~30 MHz,其他频段)表 4 星间通信、测距和时钟同步技术指标
Table 4. Parameters of the inter-satellite communication, ranging and clock synchronization
技术指标 设计要求 频率范围 Ka前向链路(22.55~23.55 GHz)
反向链路(25.60~27.22 GHz)多星通信方式 1主9从 接入方式 频分复用 通信距离 100 km 测距精度 优于1 m 时钟同步精度 ≤ 3.3 ns 每星数传速率 ≥ 20 Mbit·s–1 表 5 星间测角系统技术指标
Table 5. Parameters of inter-satellite direction measurement system
技术指标 设计要求 星空相机视场 9.5° 测角精度 9 μrad 焦距 40 mm 相对孔径 1:1.2 星空相机重量 ≤ 400 g 灯阵发射角 110° 灯阵平均电功率 15 W 灯阵重量 300 g 表 6 点源探测灵敏度(10 MHz频率,1 MHz带宽)
Table 6. Point source detection sensitivity (10 MHz frequency, 1 MHz bandwidth)
积分时间 1 hour 1 day 1 week 1 month 1 year 流量/Jy 300 61.1 23.1 11.2 3.2 -
[1] ALEXANDER J K, KAISER M L, NOVACO J C, et al. Scientific instrumentation of the radio-astronomy-explorer-2 satellite[J]. Astronomy and Astrophysics, 1975, 40(4): 365-371 [2] 陈学雷. 关于开展我国空间低频射电天文学研究的一些设想[C]//中国宇航学会深空探测技术专业委员会第二届学术会议论文集. 北京: 中国宇航学会, 2005: 49-53CHEN Xuelei. Some thoughts on developing space-based low frequency radio astronomy of our country[C]//Proceedings of the 2 nd Academic Annual Meeting of the Deep Space Exploration Commission of the Chinese Astronautics Society. Beijing: China Academy of Space Technology, 2005: 49-53 [3] 吴季, 阎敬业, 武林, 等, 一种基于卫星编队的成像方法, 专利号201510208120.5WU Ji, YAN Jingye, WU Lin, et al. An imaging method based on satellite array: CN, 201510208120.5[P]. 2015 [4] BOONSTRA A J, GARRETT M, KRUITHOF G, et al. Discovering the Sky at the Longest wavelengths (DSL)[C]//2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 20 [5] 吴季, 洪晓瑜, 阎敬业, 等. 超长波射电天文望远镜[C]//第二十八届全国空间探测学术研讨会. 兰州: 中国空间科学学会, 2015WU Ji, HONG Xiaoyu, YAN Jingye, et al. Ultralong wavelength radio astronomy telescope[C]//28 th National Space Exploration Meeting. Lanzhou: Chinese Society of Space Research, 2015 [6] 张锦绣, 陈学雷, 曹喜滨, 等. 月球轨道编队超长波天文观测微卫星任务[J]. 深空探测学报, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009ZHANG Jinxiu, CHEN Xuelei, CAO Xibin, et al. Formation flying around lunar for ultra-long wave radio interferometer mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009 [7] YAN J, WU J, GURVITS L I, et al. Ultra-low-frequency radio astronomy observations from a selenocentric orbit: first results of the Longjiang-2 experiments. Experimental Astronomy, in print, preprint arxiv: 2212.09590 [8] CHEN X L, BURNS J, KOOPMANS L, et al. Discovering the sky at the longest wavelengths with small satellite constellations[OL]. arXiv preprint arxiv: 1907.10853, 2019 [9] CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190566 doi: 10.1098/rsta.2019.0566 [10] CHEN X L, MIRALDA-ESCUDÉ J. The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption[J]. The Astrophysical Journal, 2004, 602(1): 1-11 doi: 10.1086/380829 [11] CHEN X L, MIRALDA-ESCUDÉ J. The 21 cm signature of the first stars[J]. The Astrophysical Journal, 2008, 684(1): 18-33 doi: 10.1086/528941 [12] BOWMAN J D, ROGERS A E E, MONSALVE R A, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum[J]. Nature, 2018, 555(7694): 67-70 doi: 10.1038/nature25792 [13] BARKANA R. Possible interaction between baryons and dark-matter particles revealed by the first stars[J]. Nature, 2018, 555(7694): 71-74 doi: 10.1038/nature25791 [14] SINGH S, NAMBISSAN T J, SUBRAHMANYAN R, et al. On the detection of a cosmic dawn signal in the radio background[J]. Nature Astronomy, 2022, 6(5): 607-617 doi: 10.1038/s41550-022-01610-5 [15] VEDANTHAM H K, KOOPMANS L V E. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(3): 3099-3117 doi: 10.1093/mnras/stw443 [16] SHEN E, ANSTEY D, DE LERA ACEDO E, et al. Quantifying ionospheric effects on global 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(1): 344-353 doi: 10.1093/mnras/stab429 [17] BRADLEY R F, TAUSCHER K, RAPETTI D, et al. A ground plane artifact that induces an absorption profile in averaged spectra from global 21 cm measurements, with possible application to EDGES[J]. The Astrophysical Journal, 2019, 874(2): 153 doi: 10.3847/1538-4357/ab0d8b [18] SILK J, CRAWFORD I, ELVIS M, et al. Astronomy from the Moon: the next decades[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190560 doi: 10.1098/rsta.2019.0560 [19] KOOPMANS L V E, BARKANA R, BENTUM M, et al. Peering into the dark (ages) with low-frequency space interferometers[J]. Experimental Astronomy, 2021, 51(3): 1641-1676 doi: 10.1007/s10686-021-09743-7 [20] BURNS J O. Transformative Science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190564 doi: 10.1098/rsta.2019.0564 [21] CONG Y P, YUE B, XU Y D, et al. An ultralong-wavelength sky model with absorption effect[J]. The Astrophysical Journal, 2021, 914(2): 128 doi: 10.3847/1538-4357/abf55c [22] CONG Y P, YUE B, XU Y D, et al. A new method of reconstructing Galactic 3 D structures using ultralong-wavelength radio observations[J]. The Astrophysical Journal, 2022, 940(2): 180 doi: 10.3847/1538-4357/ac9df7 [23] LIU A, PRITCHARD J R, TEGMARK M, et al. Global 21 cm signal experiments: a designer’s guide[J]. Physical Review D, 2013, 87(4): 043002 doi: 10.1103/PhysRevD.87.043002 [24] MOZDZEN T J, BOWMAN J D, MONSALVE R A, et al. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements[J]. Monthly Notices of the Royal Astronomical Society, 2016, 455(4): 3890-3900 doi: 10.1093/mnras/stv2601 [25] GU J H, WANG J Y. Direct parameter inference from global EoR signal with Bayesian statistics[J]. Monthly Notices of the Royal Astronomical Society, 2020, 492(3): 4080-4096 doi: 10.1093/mnras/staa052 [26] SHI Y, DENG F R, XU Y D, et al. Lunar orbit measurement of the cosmic dawn’s 21 cm global spectrum[J]. The Astrophysical Journal, 2022, 929(1): 32 doi: 10.3847/1538-4357/ac5965 [27] SINGH S, SUBRAHMANYAN R, SHANKAR N U, et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal[J]. Experimental Astronomy, 2018, 45(2): 269-314 doi: 10.1007/s10686-018-9584-3 [28] HUANG Q Z, SUN S J, ZUO S F, et al. An imaging algorithm for a lunar orbit interferometer array[J]. The Astronomical Journal, 2018, 156(2): 43 doi: 10.3847/1538-3881/aac6c6 [29] SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062 doi: 10.1093/mnras/stab3623 -