Research on the Down-rate Filtering Method for Observations of Precision Ranging System of Gravity Satellite
-
摘要: 在卫星时频传递、矢量测量技术领域,有效观测数据的高精度滤波处理十分重要,其基本要求是在保留有效观测信息的同时能够降低噪声干扰,实现原始信息的高效、高精度传递。以中国地球重力场测量卫星高精度测距系统的工程研制为背景,为实现高频噪声抑制、保留低频重力场信息,基于对FIR滤波器结构的优化和窗函数的改进,提出了一种对10 Hz采样率的原始测距数据降速率、降噪滤波的算法。相比其他类似算法,所提方法同时具备降速滤波和差分运算两种功能,噪声抑制抑制度优于44%,且频率截止特性陡峭,第一旁瓣抑制度达到–94 dB。该算法在提高测距精度、充分保留重力场信息的同时,实现了地面数据后处理流程的简化,为微波测量系统、激光测量系统的数据处理提供了一种优选方案。Abstract: In the field of satellite time-frequency transfer and vector measurement technology, high-precision filtering of observations is very important. The basic requirement is to reduce noise interference while retaining effective observation information, and to achieve efficient and high-precision transmission of original information. In the development of high-precision ranging system for China’s earth gravity satellite, based on optimization of the FIR filter structure and improvement of the window function, a rate-down filtering algorithm for 10Hz raw ranging data is proposed in order to achieve high-frequency noise suppression and retain low-frequency gravity field information. CEDF for short, this algorithm has the operation efficiency of convolution, extraction and difference. Compared with other similar algorithms, the proposed method has the functions of both deceleration filtering and difference calculation, the noise suppression suppression degree is better than 44%, and the frequency cutoff characteristic is steep, and the suppression degree of the first side lobe reaches –94 dB. The algorithm not only improves the ranging accuracy and fully retains the information of gravity field, but also simplifies the post-processing process of ground data, and provides an optimal scheme for the data processing of microwave measurement system and laser measurement system. CEDF algorithm plays an important role in the engineering development of Earth gravity detection satellites in China and provides an effective means for the efficiency evaluation of loads.
-
表 1 载荷数据生成参数
Table 1. Parameter configuration of payload test
卫星号 星间距离/
km载噪比/
(dB·Hz)测试时长/
h原数据速率/
HzKBR-A 220 80 7 10 KBR-B 220 80 7 10 表 2 参与对比的滤波器参数
Table 2. Filter parameters involved in the comparison
滤波器名称 阶数/抽取因子 截止带宽/Hz 第一旁瓣幅度衰减量/dB 噪声抑制度/(%) CIC滤波器 50(抽取因子) 0.1 –80 25.4 基于FIR半带滤波器 32阶 0.1 –85 33.0 基于FIR降速抽取滤波器 50(抽取因子) 0.1 –91 43.0 CEDF滤波器 7阶 0.1 –94 44.4 注 参考图3和4,噪声抑制度为 $\left[ {1 - { { { {({\rm{RMS} })}_{0.2\; {\rm{Hz} } } } } \mathord{\left/ {\vphantom { { { {({\rm{RMS} })}_{0.2\; {\rm{Hz} } } } } { { {({\rm{RMS} })}_{10\; {\rm{Hz} } } } } } } \right. } { { {({\rm{RMS} })}_{10\; {\rm{Hz} } } } } } } \right] \times 100\% 。$ 表 3 星间运动参数
Table 3. Inter-satellite motion parameters
运动工况 步进/mm 幅度/mm 速度/(mm·s–1) 加速度/(mm·s–2) 单向阶梯运动 0.1 0.9 0.01 0.001 双向往返运动 5 5 0.1 0.01 -
[1] 许厚泽, 周旭华, 彭碧波. 卫星重力测量[J]. 地理空间信息, 2005, 3(1): 1-3 doi: 10.3969/j.issn.1672-4623.2005.01.001XU Houze, ZHOU Xuhua, PENG Bibo. Satellite gravity measurement[J]. Geospatial Information, 2005, 3(1): 1-3 doi: 10.3969/j.issn.1672-4623.2005.01.001 [2] 田园园, 刘丙太, 李大全, 等. 积分清零与积分梳状滤波器在抽取滤波中的应用研究[J]. 测控技术, 2015, 34(2): 140-143 doi: 10.3969/j.issn.1000-8829.2015.02.038TIAN Yuanyuan, LIU Bingtai, LI Daquan, et al. Study and comparison on integrate and dump filters and cascaded integrator-comb filters applied in decimation[J]. Measurement & Control Technology, 2015, 34(2): 140-143 doi: 10.3969/j.issn.1000-8829.2015.02.038 [3] 罗强, 刘景元. 高速数传中改进的CIC滤波器的仿真与实现[J]. 通信技术, 2020, 53(8): 1869-1872LUO Qiang, LIU Jingyuan. Simulation and implementation of modified CIC filter in high-speed data transmission[J]. Communications Technology, 2020, 53(8): 1869-1872 [4] 陈绍荣, 张振宇, 朱行涛, 等. 一种实现截止频率变换的数字滤波器[J]. 通信技术, 2020, 53(6): 1345-1351CHEN Shaorong, ZHANG Zhenyu, ZHU Xingtao, et al. Digital filter for implementing cut-off frequency conversion[J]. Communications Technology, 2020, 53(6): 1345-1351 [5] 张建伟, 展雪梅. FIR数字滤波器的设计与实现[J]. 无线电工程, 2010, 40(6): 54-56ZHANG Jianwei, ZHAN Xuemei. Design and implementation of FIR digital filter[J]. Radio Engineering, 2010, 40(6): 54-56 [6] 袁晓, 张红雨, 虞厥邦. 分数导数与数字微分器设计[J]. 电子学报, 2004, 32(10): 1658-1665YUAN Xiao, ZHANG Hongyu, YU Juebang. Fractional-order derivative and design of fractional Digital differentiators[J]. Acta Electronica Sinica, 2004, 32(10): 1658-1665 [7] 钟燕清, 阎跃鹏, 孟真, 等. 二维非递归的低成本FIR滤波器设计方法[J]. 哈尔滨工业大学学报, 2021, 53(6): 171-176,191ZHONG Yanqing, YAN Yuepen, MENG Zhen, et al. Two-dimensional non-recursive design method of low-cost FIR filter[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 171-176,191 [8] 吴庭涛, 郑伟, 尹文杰, 等. 地球卫星重力场模型及其应用研究进展[J]. 科学技术与工程, 2020, 20(25): 10117-10132WU Tingtao, ZHENG Wei, YIN Wenjie, et al. Review of earth’s gravity field model and application from satellite[J]. Science Technology and Engineering, 2020, 20(25): 10117-10132 [9] KIM J, TAPLEY B D. Simulation of dual one-way ranging measurements[J]. Journal of Spacecraft and Rockets, 2003, 40(3): 419-425 doi: 10.2514/2.3962 [10] 王正涛. 卫星跟踪卫星测量确定地球重力场的理论与方法[D]. 武汉: 武汉大学, 2005WANG Zhengtao. Theory and methodology of earth gravity field recovery by satellite-to-satellite tracking data[D]. Wuhan: Wuhan University, 2005 [11] 康开轩, 李辉, 吴云龙, 等. 重力卫星精密星间测距系统滤波器技术指标论证[J]. 地球物理学报, 2012, 55(10): 3240-3247KANG Kaixuan, LI Hui, WU Yunlong, et al. Demonstration on the design of filter indexes of inter-satellite high accuracy ranging system for gravity satellite[J]. Chinese Journal of Geophysics, 2012, 55(10): 3240-3247 [12] 杨益新, 孙超. 一种改进的FIR数字滤波器自适应设计方法[J]. 西北工业大学学报, 2002, 20(4): 554-558 doi: 10.3969/j.issn.1000-2758.2002.04.010YANG Yixin, SUN Chao. On adaptively obtaining optimum cost functions in designing FIR (finite impulse response) digital filters[J]. Journal of Northwestern Polytechnical University, 2002, 20(4): 554-558 doi: 10.3969/j.issn.1000-2758.2002.04.010 [13] 郭敏, 高俊浩. 基于窗函数法设计FIR滤波器技术研究[J]. 数字通信世界, 2020(9): 6-8,35 doi: 10.3969/J.ISSN.1672-7274.2020.09.002GUO Min, GAO Junhao. Research on FIR filter technology based on window function method[J]. Digital Communication World, 2020(9): 6-8,35 doi: 10.3969/J.ISSN.1672-7274.2020.09.002 [14] LIU X, WANG D F, ZHONG X W, et al. Research on the inversion method of USO frequency stability joining GNSS and inter-satellite distance measurement[M]//SUN J D, LIU J N, FAN S W, et al. China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III. Singapore: Springer, 2016: 3-13 [15] LIU X, ZHONG X W, XUE D L, et al. Research progress of inter-satellite precision measurement and time-frequency synchronization technology based on USO[M]//YANG C F, XIE J. China Satellite Navigation Conference (CSNC 2021) Proceedings. Singapore: Springer, 2021: 118-127 [16] 任堰牛, 青小渠. FIR半带滤波器的简化结构及其仿真研究[J]. 兵工自动化, 2013, 32(3): 53-56 doi: 10.7690/bgzdh.2013.03.015REN Yanniu, QING Xiaoqu. Simplified structure and simulation research of FIR half-band filter[J]. Ordnance Industry Automation, 2013, 32(3): 53-56 doi: 10.7690/bgzdh.2013.03.015 [17] 李家会, 周金治. 抽取滤波器的实现结构研究[J]. 信息与电子工程, 2006, 4(4): 296-300LI Jiahui, ZHOU Jinzhi. Implementing structure of decimation filter[J]. Information and Electronic Engineering, 2006, 4(4): 296-300 -