留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于风云3C卫星观测数据的全球重力波活动特性研究

王聪 杨钧烽 程旋 郭文杰 李嘉巍 杨光林 张效信 杨忠东 胡秀清 谷松岩 张鹏

王聪, 杨钧烽, 程旋, 郭文杰, 李嘉巍, 杨光林, 张效信, 杨忠东, 胡秀清, 谷松岩, 张鹏. 基于风云3C卫星观测数据的全球重力波活动特性研究[J]. 空间科学学报, 2023, 43(2): 260-272. doi: 10.11728/cjss2023.02.211108111
引用本文: 王聪, 杨钧烽, 程旋, 郭文杰, 李嘉巍, 杨光林, 张效信, 杨忠东, 胡秀清, 谷松岩, 张鹏. 基于风云3C卫星观测数据的全球重力波活动特性研究[J]. 空间科学学报, 2023, 43(2): 260-272. doi: 10.11728/cjss2023.02.211108111
WANG Cong, YANG Junfeng, CHENG Xuan, GUO Wenjie, LI Jiawei, YANG Guanglin, ZHANG Xiaoxin, YANG Zhongdong, HU Xiuqing, GU Songyan, ZHANG Peng. Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 260-272 doi: 10.11728/cjss2023.02.211108111
Citation: WANG Cong, YANG Junfeng, CHENG Xuan, GUO Wenjie, LI Jiawei, YANG Guanglin, ZHANG Xiaoxin, YANG Zhongdong, HU Xiuqing, GU Songyan, ZHANG Peng. Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 260-272 doi: 10.11728/cjss2023.02.211108111

基于风云3C卫星观测数据的全球重力波活动特性研究

doi: 10.11728/cjss2023.02.211108111
基金项目: 国家卫星气象中心青年人才基金项目(202104QT042),国家自然科学基金项目(11872128, 91952111)和中国科学院国家空间科学中心“青年科技创新”课题 (E1PD40018S)共同资助
详细信息
    作者简介:

    郭文杰:E-mail:gwj2127@163.com

  • 中图分类号: P351

Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data

  • 摘要: 大气重力波是临近空间中重要的动力学过程之一,并且广泛存在于全球大气层中,研究其全球分布及变化规律,对理解大气动力学具有重要意义。全球卫星导航系统(GNSS)可以通过掩星的方式来获取临近空间大气的温度信息,并且具有全球覆盖、垂直和水平分辨率较高的优点,从而被广泛应用于临近空间大气重力波研究。利用气象卫星风云3号C星(FY-3C)搭载的全球导航卫星掩星接收机(GNOS)的探测数据来反演全球重力波扰动分布,反演得到了2015-2019年这5年间的全球重力波分布,并着重分析了全球重力波的季节变化、年际变化以及长波和短波重力波的全球分布和特征。结果表明,冬夏两季的重力波扰动要强于春秋两季,并且呈现冬季半球强于夏季半球的现象; 同时还发现,重力波扰动的强度随着高度增加而逐渐增强;在20~50 km的高度范围内短波重力波强度大于长波重力波强度。

     

  • 图  1  25 km高度层全球重力波(2~20 km)扰动强度分布

    Figure  1.  Distribution of global gravity wave (2~20 km) disturbance intensity at 25 km altitude

    图  2  35 km高度层全球重力波(2~20 km)扰动强度分布情况

    Figure  2.  Distribution of global gravity wave (2~20 km) disturbance intensity at 35 km altitude

    图  3  45 km高度层全球重力波(2~20 km)扰动强度分布情况

    Figure  3.  Distribution of global gravity wave (2~20 km) disturbance intensity at 45 km altitude

    图  4  2015-2019年FY-3C卫星观测数据分析的不同季节的25 km高度层全球重力波长波扰动强度分布

    Figure  4.  Distribution of global gravity wave disturbance intensity at 25 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  5  2015-2019年FY-3C卫星观测数据分析的不同季节35 km高度层全球重力波长波扰动强度分布

    Figure  5.  Distribution of global gravity wave disturbance intensity at 35 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  6  2015-2019年FY-3C卫星观测数据分析的不同季节45 km高度层全球重力波长波扰动强度分布

    Figure  6.  Distribution of global gravity wave disturbance intensity at 45 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  7  2015-2019年FY-3C卫星观测数据分析的不同季节25 km高度层全球重力波短波扰动强度分布

    Figure  7.  Distribution of global gravity wave disturbance intensity at 25 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  8  2015-2019年FY-3C卫星观测数据分析的不同季节35 km高度层全球重力波短波扰动强度分布

    Figure  8.  Distribution of global gravity wave disturbance intensity at 35 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  9  2015-2019年FY-3C卫星观测数据分析的不同季节的45 km高度层全球重力波短波扰动强度分布情况

    Figure  9.  Distribution of global gravity wave disturbance intensity at 45 km altitude in different seasons based on analysis of FY-3C observation data from 2015 to 2019

    图  10  2015-2019年FY-3C卫星观测数据分析的纬圈平均扰动随高度和纬度的变化

    Figure  10.  Latitudinal mean perturbation with altitude and latitude based on analysis of FY-3C observation data from 2015 to 2019

    图  11  平均重力波扰动在南北半球高纬度地区的变化

    Figure  11.  Variations of mean gravity wave perturbations at high latitudes in both hemispheres

    图  12  中纬度地区和赤道地区在不同高度上的平均重力波扰动强度

    Figure  12.  Variations of mean gravity wave perturbations at different altitudes in mid-latitude and equatorial regions

  • [1] ALLEN S J, VINCENT R A. Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D1): 1327-1350 doi: 10.1029/94JD02688
    [2] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2012, 50(3): RG3004-1
    [3] 吕达仁, 陈泽宇, 郭霞, 等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008

    LYU Daren, CHEN Zeyu, GUO Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008
    [4] 徐凯, 姚志刚, 韩志刚, 等. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1): 66-74

    XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Advances in Earth Science, 2017, 32(1): 66-74
    [5] WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques[J]. Advances in Space Research, 2006, 37(12): 2269-2277 doi: 10.1016/j.asr.2005.07.031
    [6] ALEXANDER M J, GILLE J, CAVANAUGH C, et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D15): D15S18
    [7] WU D L, ECKERMANN S D. Global gravity wave variances from Aura MLS: characteristics and interpretation[J]. Journal of the Atmospheric Sciences, 2008, 65(12): 3695-3718 doi: 10.1175/2008JAS2489.1
    [8] PREUSSE P, ECKERMANN S D, ERN M, et al. Global ray tracing simulations of the SABER gravity wave climatology[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8): D08126
    [9] 张云, 熊建刚, 万卫星. 中层大气重力波的全球分布特征[J]. 地球物理学报, 2011, 54(7): 1711-1717

    ZHANG Yun, XIONG Jiangang, WAN Weixing. Analysis on the global morphology of middle atmospheric gravity waves[J]. Chinese Journal of Geophysics, 2011, 54(7): 1711-1717
    [10] HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 416-434 doi: 10.1029/2012JD018658
    [11] LIU X, YUE J, XU J Y, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7368-7381 doi: 10.1002/2013JD021439
    [12] MILLER S D, STRAKA W C, YUE J, et al. Upper atmospheric gravity wave details revealed in nightglow satellite imagery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): E6728-E6735
    [13] 姚志刚, 孙睿, 赵增亮, 等. 风云三号卫星微波观测的临近空间大气扰动特征[J]. 地球物理学报, 2019, 62(2): 473-488

    YAO Zhigang, SUN Rui, ZHAO Zengliang, et al. Gravity waves in the near space observed by the microwave temperature sounder of the FY-3C meteorology satellite[J]. Chinese Journal of Geophysics, 2019, 62(2): 473-488
    [14] 金双根, 高超, 李君海. 利用FY-3C气象卫星GNSS掩星估计全球重力波变化与分析[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 57-67

    JIN Shuanggen, GAO Chao, LI Junhai. Estimation and analysis of global gravity wave using GNSS radio occultation data from FY-3C meteorological satellite[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(1): 57-67
    [15] SUN Y Q, BAI W H, LIU C L, et al. The FengYun-3 C radio occultation sounder GNOS: a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5797-5811 doi: 10.5194/amt-11-5797-2018
    [16] LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
    [17] LIU Z Y, SUN Y Q, BAI W H, et al. Validation of preliminary results of thermal tropopause derived from FY-3 C GNOS data[J]. Remote Sensing, 2019, 11(9): 1139 doi: 10.3390/rs11091139
    [18] LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9707-9714 doi: 10.1029/JC086iC10p09707
    [19] 陈操. 中层大气重力波的瑞利激光雷达初步研究[D]. 合肥: 中国科学技术大学, 2010

    CHEN Cao. The Preliminary Studies on the Gravity Waves of Mid-atmosphere Through Rayleigh Lidar Techniques[D]. Hefei: University of Science and Technology of China, 2010
    [20] 肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    XIAO Cunying. Researches on the Dynamics of the Atmosphere in the Near Space[D]. Beijing: Graduate University of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2009
    [21] 陈泽宇, 吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330 doi: 10.3321/j.issn:1001-8166.2009.03.010

    CHEN Zeyu, LYU Daren. Characteristics of the stratospheric travelling planetary waves revealed by using satellite data[J]. Advances in Earth Science, 2009, 24(3): 320-330 doi: 10.3321/j.issn:1001-8166.2009.03.010
    [22] 肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221

    XIAO Cunying, HU Xiong, WANG Bo, et al. Quantitative studies on the variations of near space atmospheric fluctuation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221
    [23] 郭文杰, 姚志刚, 杨钧烽, 等. AIRS观测资料研究全球平流层重力波特性[J]. 空间科学学报, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609

    GUO Wenjie, YAO Zhigang, YANG Junfeng, et al. Research on global stratospheric gravity wave characteristics by AIRS observation data[J]. Chinese Journal of Space Science, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609
    [24] YUE J, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(8): 3178-3191 doi: 10.1002/jgrd.50341
  • 加载中
图(12)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  53
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-09-06
  • 修回日期:  2022-11-08
  • 网络出版日期:  2023-04-03

目录

    /

    返回文章
    返回