Trajectory Tracking Hybrid Control and Vibration Suppression of Free-floating Multi-flexible Space Robot with Limited Input
-
摘要: 空间机器人在实际运作中往往会遇到控制系统输入受限的情况,这将严重影响系统的控制品质。考虑输入受限的情况,对漂浮基多柔性空间机器人系统进行研究。通过对系统进行运动学和动力学分析,构建系统的动力学方程。采用奇异摄动方法,将刚柔耦合系统分为慢变子系统和快变子系统,并为各个子系统设计控制方法。最终提出由改进的鲁棒滑模模糊控制方法、速度差值反馈控制法和线性二次最优控制方法组成的混合控制方法。该控制方法能够主动减小空间机器人完成期望运动所需的力矩,使系统适应输入受限的工作条件;同时能够补偿系统的不确定参数和外部干扰,最终实现系统运动的精确控制和振动的主动抑制。仿真对比实验证明了在输入受限的情况下,所提出的混合控制方法的有效性和强适应性。Abstract: In the actual operation of a space robot, the input of the control system is often limited, which will seriously affect the control quality of the system. In this paper, a flexible space robot system based on floating substrate is studied with limited input. The system’s dynamics equation is established through the system’s kinematics and dynamics analysis. For the rigid-flexible coupling system, the singular perturbation method decomposes the system into slow and fast independent subsystems, and control methods are designed for each subsystem. Finally, a hybrid control method consisting of an improved robust sliding mode fuzzy control method, a velocity difference feedback control, and a linear-quadratic optimal control is proposed. The control method can actively reduce the torque required by the space robot to complete the desired movement and make the system adapt to the working conditions with limited input. At the same time, it can compensate for the uncertain parameters and external disturbance and realize the precise control of the system motion and active suppression of vibration. Simulation experiments show that the proposed hybrid control method is effective and adaptable when limited input.
-
Key words:
- Free-floating space robot /
- Limited input /
- Flexible /
- Motion control /
- Vibration suppression
-
表 1 仿真的漂浮基空间机器人系统参数
Table 1. System parameters of the simulated free-floating space robot
质量/kg 转动惯量/(kg·m2) 长度/m 密度/(kg·m–1) 刚性系数/(N·m·rad–1) 刚性基座 100 34.17 1.5 - - 杆$ {{B}}{}_1 $ 不确定 不确定 不确定 不确定 不确定 杆$ {{B}}{}_2 $ 不确定 不确定 不确定 不确定 不确定 电机转子1 0 0.5 - - 300 电机转子2 0 0.5 - - 300 -
[1] STEFANO MD, BALACHANDRAN R, SECCHI C. A passivity-based approach for simulating satellite dynamics with robots: discrete-time integration and time-delay compensation[J]. IEEE Transactions on Robotics, 2020, 36(1): 189-203 doi: 10.1109/TRO.2019.2945883 [2] DING Xilun, WANG Yecong, WANG Yyaobing, et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China Technological Sciences, 2021, 64(3): 462-480 doi: 10.1007/s11431-020-1737-4 [3] ZHOU Yiqun, LUO Jianjun, WANG Mingming. Dynamic coupling analysis of multi-arm space robot[J]. Acta Astronautica, 2019, 160: 583-593 doi: 10.1016/j.actaastro.2019.02.017 [4] 艾海平, 陈力. 空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制[J]. 空间科学学报, 2020, 40(4): 584-594 doi: 10.11728/cjss2020.04.584AI Haiping, CHEN Li. Passivity active disturbance rejection collision avoidance compliant control of dual-arm space robot capture spacecraft[J]. Chinese Journal of Space Science, 2020, 40(4): 584-594 doi: 10.11728/cjss2020.04.584 [5] YU Zhangwei, GAO Mingzhou, CAI Guoping. Active control of a 6-DOF space robot with flexible panels using singular perturbation method[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 83-99 doi: 10.1007/s40295-019-00166-3 [6] PAN Dong, ZHAO Yang ZHANG Yue, et al. Dynamic modeling and analysis of space manipulator considering the flexible of joint and link[J]. Advanced Materials Research, 2013, 823: 270-275 doi: 10.4028/www.scientific.net/AMR.823.270 [7] 付晓东, 陈力. 全柔性空间机器人基于虚拟力的输出反馈有限维重复学习控制及振动抑制[J]. 空间科学学报, 2021, 41(5): 819-827 doi: 10.11728/cjss2021.05.819FU Xiaodong, CHEN Li. Output feedback finite-dimensional repetitive learning control on virtual force for flexible-base flexible-link and flexible-joint space robot[J]. Chinese Journal of Space Science, 2021, 41(5): 819-827 doi: 10.11728/cjss2021.05.819 [8] 张丽娇, 陈力. 柔性关节和柔性臂空间机器人的L2增益鲁棒控制[J]. 系统仿真学报, 2018, 30(4): 1448-1455ZHANG Lijiao, CHEN Li. L2-gain robust control for flexible joints and flexible link space robot[J]. Journal of System Simulation, 2018, 30(4): 1448-1455 [9] 洪昭斌, 陈力, 李文望. 柔性臂杆、柔性关节空间机械臂T-S模糊轨迹跟踪及双柔振动并行综合控制[J]. 中国机械工程, 2016, 27(15): 2020-2026 doi: 10.3969/j.issn.1004-132X.2016.15.006HONG Zhaobin, CHEN Li, LI Wenwang. T-S fuzzy trajectory tracking and double-flexible parallel control of flexible-link flexible-joint space manipulator[J]. China Mechanical Engineering, 2016, 27(15): 2020-2026 doi: 10.3969/j.issn.1004-132X.2016.15.006 [10] 梁捷, 陈力, 梁频. 空间机械臂刚柔耦合动力学模拟及小波基模糊神经网络控制[J]. 载人航天, 2015, 21(3): 286-294 doi: 10.3969/j.issn.1674-5825.2015.03.013LIANG Jie, CHEN Li, LIANG Pin. The rigid-flexible coupling dynamics simulation and wavelet based fuzzy neural network control for space manipulator[J]. Manned Spaceflight, 2015, 21(3): 286-294 doi: 10.3969/j.issn.1674-5825.2015.03.013 [11] XIE Linmin, YU Xiaoyan, CHEN Li. Robust fuzzy sliding mode control and vibration suppression of free-floating flexible-link and flexible-joints space manipulator with external interference and uncertain parameter[J]. Robotica, 2022, 40(4): 997-1019 doi: 10.1017/S0263574721000977 [12] AGUIÑAGA-RUIZ E, ZAVALA-RÍO A, SANTIBÁÑEZ V, et al. Global trajectory tracking through static feedback for robot manipulators with bounded inputs[J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 934-944 [13] 刘华山, 金元林, 程新, 等. 力矩输入有界的柔性关节机器人轨迹跟踪控制[J]. 控制理论与应用, 2019, 36(6): 983-992 doi: 10.7641/CTA.2018.80200LIU Huashan, JIN Yuanlin, CHEN Xin, et al. Trajectory tracking control for flexible-joint robot manipulators with bounded torque inputs[J]. Control Theory & Applications, 2019, 36(6): 983-992 doi: 10.7641/CTA.2018.80200 [14] PLIEGO-JIMENEZ J, ARTEAGA-PEREZ M A, LOPEZ-RODRIGUEZ M. Finite-time control for rigid robots with bounded input torques[J]. Control Engineering Practice, 2020, 102: 104556 doi: 10.1016/j.conengprac.2020.104556 [15] DING Shuai, PENG Jinzhou, ZHANG Hui, et al. Neural network-based adaptive hybrid impedance control for electrically driven flexible-joint robotic manipulators with input saturation[J]. Neurocomputing, 2021, 458(2): 99-111 [16] 时存, 古思勇, 王莹. 力矩受限双臂空间机器人轨迹跟踪与控制[J]. 机械设计与制造, 2020(11): 275-278,283 doi: 10.3969/j.issn.1001-3997.2020.11.068SHI Cun, GU Siyong, WANG Ying. Tracking control for dual-arm space robot under the conditions of the limited torque[J]. Machinery Design & Manufacture, 2020(11): 275-278,283 doi: 10.3969/j.issn.1001-3997.2020.11.068 [17] 庞哲楠, 张国良, 羊帆, 等. 力矩受限的柔性空间机器人模糊神经网络自适应跟踪控制及振动抑制[J]. 计算机应用, 2016, 36(10): 2799-2805,2821 doi: 10.11772/j.issn.1001-9081.2016.10.2799PANG Zhenan, ZHANG Guoliang, YANG Fan, et al. Adaptive tracking control and vibration suppression by fuzzy neural network for free-floating flexible space robot with limited torque[J]. Journal of Computer Applications, 2016, 36(10): 2799-2805,2821 doi: 10.11772/j.issn.1001-9081.2016.10.2799 [18] 谢立敏, 陈力. 力矩受限的柔性关节空间机器人的鲁棒模糊滑模控制[J]. 工程力学, 2013, 30(8): 298-304 doi: 10.6052/j.issn.1000-4750.2012.05.0323XIE Limin, CHEN Li. Robust fuzzy sliding mode control of free-floating space robot with flexible-joints and bounded torques[J]. Engineering Mechanics, 2013, 30(8): 298-304 doi: 10.6052/j.issn.1000-4750.2012.05.0323 [19] LIU Liaoxue, YAO Wei, GUO Yu. Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances under input saturation[J]. Journal of the Franklin Institute, 2021, 358(9): 4571-4601 doi: 10.1016/j.jfranklin.2021.03.001 [20] SUN Changyin, GAO Hejia, HE Wei, et al. Fuzzy Neural network control of a flexible robotic manipulator using assumed mode method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5214-5227 doi: 10.1109/TNNLS.2017.2743103 [21] LENNARTSON B. Singular perturbation methods in control: Analysis and design: Petar Kokotović, Hassan K. Khalil and John O'Reilly[J]. Automatica, 1989, 25(6): 953-954 doi: 10.1016/0005-1098(89)90063-0 [22] BEMPORAD A, MORARI M, DUA V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38(1): 3-20 doi: 10.1016/S0005-1098(01)00174-1 [23] SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(4): 310-318 doi: 10.1115/1.3143860 [24] KRALL A M. Asymptotic stability of the Euler-Bernoulli beam with boundary control[J]. Journal of Mathematical Analysis and Applications, 1989, 137(1): 288-295 doi: 10.1016/0022-247X(89)90289-8 [25] 郭振锋, 金国光, 畅博彦, 等. 刚-柔性机械臂动力学建模及其动力学特性研究[J]. 天津工业大学学报, 2013, 32(1): 70-74 doi: 10.3969/j.issn.1671-024X.2013.01.017GUO Zhenfeng, JIN Guoguang, CHANG Boiyan, et al. Research of dynamic modeling and performance for rigid-flexible manipulators[J]. Journal of Tianjin Polytechnic University, 2013, 32(1): 70-74 doi: 10.3969/j.issn.1671-024X.2013.01.017 -