Sky Area Target of Opportunity Mission Planning Method
-
摘要: 针对中法合作SVOM卫星的天区范围内机遇目标规划问题(ToO-MM),对其中的约束条件和优化目标进行抽象,建立了规划问题数学模型,设计实现了基于启发式规则的机遇目标规划算法TMHPA。以最大化卫星科学观测收益和最大化应急任务响应度为优化目标,考虑卫星姿态调整时间的影响,对观测任务和数传任务进行规划。通过仿真实验验证算法的有效性,结果表明该方法能够在保证算法收敛性和时效性同时,给出卫星在天区范围内的网格单元(tile)目标观测序列以及执行数传任务的时段安排,实现对ToO目标观测的快速响应,并及时下传机遇目标科学观测数据,满足规划算法的设计需求。Abstract: In regard to the planning problem of ToO-MM (a type of sky area Target of Opportunity) for SVOM (Space-based multi-band astronomical Variable Objects Monitor) mission, the constraints and optimization goals are abstracted, the mathematical description model is established, and the algorithm TMHPA (ToO-MM Heuristic Planning Algorithm) based on heuristic strategy is designed. The algorithm aims at maximizing satellite scientific observation benefits and maximizing emergency task response, and considering the influence of satellite attitude adjustment time, the observation tasks and data transmission tasks can be planned. An example is given to verify the effectiveness of this algorithm. The results show that the method executed in this paper is not only able to solve the problem of ToO-MM, but also to ensure the convergence and timeliness. TMHPA can give the target observation sequence of the satellite within the sky area and the time period arrangement for performing data transmission tasks. Compared with GA (Genetic Algorithm) and DEA (Differential Evolution Algorithm), it has a shorter computational time overhead and a smaller attitude adjustment time. The TMHPA algorithm could achieve the rapid response to the target observation, and meet the design requirements as well.
-
表 1 ToO-MM规划模型基本符号定义
Table 1. Parameter definition of ToO-MM model
符号 描述 T 机遇目标tile集合 W 目标可视时间窗口 G 地面数传站可视窗口 R 观测任务规划结果 K 数传任务规划结果 N tile的总数量 S 姿态调整时长 E 姿态调整时段 C 一个圈次观测tile数量 O 存储量 表 2 GW170814天区机遇目标tile数据
Table 2. Tile data of GW170814
编号 赤经/(º) 赤纬/(º) 观测时长/min 观测优先级 1 47.857142 –42.609806 10 1.589328 2 45.775862 –46.571847 10 1.553358 3 46.428571 –42.609806 10 1.425764 4 47.950812 –44.201529 10 1.415292 ··· ··· ··· ··· ··· 228 35.816326 –53.572233 10 0.068670 229 39.919354 –43.406858 10 0.066731 230 50.901639 –44.201529 10 0.066025 表 3 TMPHA规划结果
Table 3. Planning result of TMPHA
年-月-日 时刻 (UT) 积秒 编号 圈次 持续时长/s 调姿时间/s 2022-09-26 01:24:56 23160296 4 3975 733 108 2022-09-26 02:15:25 23163325 5 3976 600 104 2022-09-26 02:27:09 23164029 7 3976 600 105 2022-09-26 02:38:54 23164734 6 3976 600 108 ··· ··· ··· ··· ··· ··· ··· 2022-09-26 23:39:30 23240370 56 3989 600 113 2022-09-26 23:51:23 23241083 57 3989 600 105 2022-09-27 00:03:08 23241788 60 3989 958 105 表 4 各个优化目标函数值
Table 4. Value of each optimization objective function
优化目标 $ {f}_{\mathrm{p}\mathrm{r}\mathrm{o}} $ $ {f}_{\mathrm{s}\mathrm{l}\mathrm{e}\mathrm{w}} $ $ {f}_{\mathrm{p}\mathrm{r}\mathrm{i}} $ F 数值 0.0124 0.028 0.043 0.0641 表 5 算法对比结果
Table 5. Comparison results of algorithm
算法 GA DEA TMHPA 总观测收益 54.17 52.32 50.90 卫星调姿用时/s 8502.11 8471.83 8199.36 算法总耗时/s 144.31 135.45 3.78 -
[1] PAUL J, WEI J Y, BASA S, et al. The Chinese-French SVOM mission for gamma-ray burst studies[J]. Comptes Rendus Physique, 2011, 12(3): 298-308 doi: 10.1016/j.crhy.2011.01.009 [2] CASTELLINI F, LAVAGNA M. Advanced planning and scheduling initiative’s XMAS tool: AI for automatic scheduling of XMM-Newton long term plan[C]//6 th International Workshop on Planning and Scheduling for Space. Pasadena: European Space Agency Publications Division, 2009 [3] LU F J, ZHANG S N. Status of the hard X-ray modulation telescope (insight-HXMT) project[J]. Chinese Journal of Space Science, 2018, 38(5): 623-626 doi: 10.11728/cjss2018.05.623 [4] 李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学: 物理学 力学 天文学, 2020, 50(12): 129508LI Xinqiao, WEN Xiangyang, AN Zhenghua, et al. The GECAM and its payload[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(12): 129508 [5] FRATINI S, CESTA A. The APSI framework: a platform for timeline synthesis[C]//Proceedings of the 1 st Workshops on Planning and Scheduling with Timelines. Atibaia: PSTL, 2012: 8-15 [6] KITCHING M, POLICELLA N. A local search solution for the INTEGRAL long term planning[C]//7 th International Workshop on Planning and Scheduling for Space. Darmstadt: IWPSS, 2011 [7] 吴海燕, 孟新, 张玉珠, 等. 面向天文观测的空间科学卫星任务规划方法研究[J]. 空间科学学报, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561WU Haiyan, MENG Xin, ZHANG Yuzhu, et al. Research on the planning method for astronomy observation mission[J]. Chinese Journal of Space Science, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561 [8] 刘薇, 林宝军. 天文卫星巡天扫描智能规划模型及仿真[J]. 系统仿真学报, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047LIU Wei, LIN Baojun. Intelligent model of astronomical satellite using GA for scanning the celestial sphere[J]. Journal of System Simulation, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047 [9] 黄跃, 屈进禄, 贾淑梅, 等. HXMT卫星长期任务规划算法[J]. 空间科学学报, 2017, 37(6): 766-772 doi: 10.11728/cjss2017.06.766HUANG Yue, QU Jinlu, JIA Shumei, et al. Long-term planning algorithm for the HXMT mission[J]. Chinese Journal of Space Science, 2017, 37(6): 766-772 doi: 10.11728/cjss2017.06.766 [10] 刘雯, 李立钢. 基于改进遗传算法的天文卫星任务规划研究[J]. 计算机仿真, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013LIU Wen, LI Ligang. Mission planning of space astronomical satellite based on improved genetic algorithm[J]. Computer Simulation, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013 [11] 韩传奇, 刘玉荣, 李虎. 基于改进遗传算法对小卫星星群任务规划研究[J]. 空间科学学报, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129HAN Chuanqi, LIU Yurong, LI Hu. Mission planning for small satellite constellations based on improved genetic algorithm[J]. Chinese Journal of Space Science, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129 [12] 刘勇. 天文卫星机遇目标任务重规划方法研究[D]. 北京: 中国科学院大学, 2019LIU Yong. Research on Astronomical Satellite Target of Opportunity Task Re-planning Algorithm[D]. Beijing: University of Chinese Academy of Sciences, 2019 [13] 韩鹏, 郭延宁, 李传江, 等. 基于相对成像时刻编码遗传算法的敏捷成像卫星任务规划[J]. 宇航学报, 2021, 42(11): 1427-1438 doi: 10.3873/j.issn.1000-1328.2021.11.009HAN Peng, GUO Yanning, LI Chuanjiang, et al. A relative imaging time coding-based genetic algorithm for agile imaging satellite task planning[J]. Journal of Astronautics, 2021, 42(11): 1427-1438 doi: 10.3873/j.issn.1000-1328.2021.11.009 [14] 甘岚, 龚胜平. 机动卫星星座对多目标成像任务规划[J]. 清华大学学报(自然科学版), 2021, 61(3): 240-247 doi: 10.16511/j.cnki.qhdxxb.2020.26.013GAN Lan, GONG Shengping. Observation mission planning for maneuverable satellite constellations towards multiple targets[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(3): 240-247 doi: 10.16511/j.cnki.qhdxxb.2020.26.013 [15] KIM H, CHANG Y K. Mission scheduling optimization of SAR satellite constellation for minimizing system response time[J]. Aerospace Science and Technology, 2015, 40: 17-32 doi: 10.1016/j.ast.2014.10.006 [16] 赵琳, 王硕, 郝勇, 等. 基于地面任务-空间姿态映射的敏捷卫星任务规划[J]. 航空学报, 2018, 39(10): 322066 doi: 10.7527/S1000-6893.2018.22066ZHAO Lin, WANG Shuo, HAO Yong, et al. Mission planning for agile satellite based on the mapping relationship between ground missions and spatial attitudes[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322066 doi: 10.7527/S1000-6893.2018.22066 [17] 毛李恒, 邓清, 刘柔妮, 等. 针对多星多任务仿真调度的关键路径遗传算法[J]. 系统仿真学报, 2021, 33(1): 205-214 doi: 10.16182/j.issn1004731x.joss.19-0301MAO Liheng, DENG Qing, LIU Rouni, et al. CPM-GA for multi-satellite and multi-task simulation scheduling[J]. Journal of System Simulation, 2021, 33(1): 205-214 doi: 10.16182/j.issn1004731x.joss.19-0301 [18] 于静, 杨文沅, 刘晓路, 等. 成像卫星密集任务合成方法及其调度算法[J]. 华中科技大学学报(自然科学版), 2021, 49(10): 73-78 doi: 10.13245/j.hust.211012YU Jing, YANG Wenyuan, LIU Xiaolu, et al. Intensive task merging method and scheduling algorithm for imaging satellites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(10): 73-78 doi: 10.13245/j.hust.211012 [19] 徐子羚. Tiling覆盖策略的天文卫星机遇目标任务规划方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2021XU Ziling. Research on Astronomical Satellite ToO Planning under Tiling Coverage Strategy[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center), 2021 -