Interference Analysis on Q/V Band ISL between NGSO Constellation Systems
-
摘要: 随着大规模星座系统的发展,近地轨道空间频轨资源越来越紧缺。随之而来的星载通信链路干扰风险不容忽视,已成为今后星座系统设计需要重点考量的指标之一。在规避干扰的前提下,保证星座系统的工作性能至关重要。针对大规模非静止轨道(NGSO)星座系统星间链路存在的干扰风险问题,提出了基于干扰、受扰链路夹角的干扰规避方法。以Starlink的Q/V波段星间链路为例,定义了系统效率与工作效率,研究不同干扰规避方法与建链策略下系统的鲁棒性。仿真结果表明,基于受扰链路夹角的干扰规避方法能够在不同建链策略下将系统干扰噪声比I /N超限时长分别从5.79%和16.75%降至0,并且不影响工作链路。这种仿真方法对于类似具有星间链路的大规模NGSO星座系统的干扰规避具有借鉴意义。Abstract: With the development of large-scale constellation system, low-Earth-orbit space frequency orbit resources are increasingly scarce. The subsequent risk of space-borne communication link interference cannot be ignored, and it becomes one of the key indicators to be considered in the future constellation system design. On the premise of avoiding interference, it is crucial to ensure the working performance of constellation system. Intersatellite link has great interference risk in large scale NGSO constellation systems. To solve that, the interference avoidance methods based on the interfering and interfered angle are proposed. Taking the Starlink with Q/V band as an example, the working efficiency and anti-interference efficiency of the system are defined, and the robustness of the system under different interference avoidance methods and chain building strategies is studied. Simulation results show that the interference avoidance based on the interfered angle can reduce the I/N overrun time ratio from 5.79% and 16.75% to 0 respectively under different link building strategies, without affecting the working link. This simulation method can be a reference for large-scale NGSO constellation interference avoidance with intersatellite links.
-
Key words:
- Inter-satellite link /
- Starlink /
- Interference avoidance /
- NGSO /
- Simulation
-
表 1 Starlink轨道输入参量
Table 1. Starlink orbit input parameters
参量 数值 轨道面 2A 5A 5B 5C 近地点/km 13892.3 1056 27354.9 31571.5 远地点/km 13892.3 1056 44221.4 40004.7 半长轴/km 13892.3 1056 35788 35788 倾角/(°) 25 54 63.4 63.4 离心率 0 0 0 0 轨道面数量 3 11 5 5 卫星数/轨 1 12 2 1 表 2 天线空口参数
Table 2. Antenna radio parameters
参量 数值 天线类型 发射端 接收端 波束名 LIMT LIMR 频率/GHz 50 50 带宽/MHz 900 900 主瓣增益/dBi 48 45.4 效率/(%) 60 60 峰值功率/dBw 18.5 17 噪温/K - 627 表 3 θ1累计概率
Table 3. Cumulative probability of θ1
X/(°) 概率/(%) 1 1.38 2 5.05 3 14.09 4 43.24 5 75.01 6 91.41 7 97.23 8 100 -
[1] 刘向南, 赵卓, 李晓亮, 等. 星间链路技术研究现状及关键技术分析[J]. 遥测遥控, 2019, 40(4): 1-9 doi: 10.3969/j.issn.2095-1000.2019.04.001LIU Xiangnan, ZHAO Zhuo, LI Xiaoliang, et al. Research status and key technologies analysis of inter-satellite link[J]. Journal of Telemetry, Tracking and Command, 2019, 40(4): 1-9 doi: 10.3969/j.issn.2095-1000.2019.04.001 [2] JIA M, LI Z, GU X M, et al. Joint multi-beam power control for LEO and GEO spectrum-sharing networks[C]//2021 IEEE/CIC International Conference on Communications in China (ICCC). Xiamen: IEEE, 2021: 841-846 [3] SUI Y, DONG X C, YIN P, et al. Modeling and analysis of radio frequency interference impacts from geosynchronous SAR on low earth orbit SAR[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 1666-1669 [4] 李伟, 魏文康, 刘畅, 等. 基于空间位置概率的NGSO通信星座干扰仿真分析研究[J]. 电波科学学报, 2021, 36(3): 483-490 doi: 10.12265/j.cjors.2021007LI Wei, WEI Wenkang, LIU Chang, et al. Interference analysis simulation method based on spatial position probability for NGSO communication constellation system[J]. Chinese Journal of Radio Science, 2021, 36(3): 483-490 doi: 10.12265/j.cjors.2021007 [5] GU P, LI R, HUA C Q, et al. Dynamic cooperative spectrum sharing in a multi-beam LEO-GEO co-existing satellite system[J]. IEEE Transactions on Wireless Communications, 2021, 21(2): 1170-1182 [6] MENG S Y, JIA M, GUO Q, et al. Inter satellite link interference detection and analysis of NGSO satellite system[C]//Proceedings of the 12 th International Conference on Wireless and Satellite Systems. Springer, 2021: 1-11 [7] ANZAGIRA A, EDMONSON W W, AMANOR D N. LED-based visible light intersatellite communication for distributed space systems[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2(3): 140-147 doi: 10.1109/JMASS.2021.3059373 [8] WANG Y K, MENG L Q, XU X S, et al. Research on semi-physical simulation testing of inter-satellite laser interference in the China Taiji space gravitational wave detection program[J]. Applied Sciences, 2021, 11(17): 7872 doi: 10.3390/app11177872 [9] LEYVA-MAYORGA I, SORET B, POPOVSKI P. Inter-plane inter-satellite connectivity in dense LEO constellations[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3430-3443 doi: 10.1109/TWC.2021.3050335 [10] OSORO O B, OUGHTON E J. A techno-economic framework for satellite networks applied to low earth orbit constellations: assessing Starlink, OneWeb and Kuiper[J]. IEEE Access, 2021, 9: 141611-141625 doi: 10.1109/ACCESS.2021.3119634 [11] 刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000: 7-8LIU Lin. Orbit Theory of Spacecraft[M]. Beijing: National Defense Industry Press, 2000: 7-8 [12] BHATTACHERJEE D, SINGLA A. Network topology design at 27, 000 km/hour[C]//Proceedings of the 15 th International Conference on Emerging Networking Experiments and Technologies. Orlando: Association for Computing Machinery, 2019: 341-354 [13] 李伟, 潘冀, 严康, 等. 基于协作的大规模NGSO星座间频率兼容共存研究[J]. 北京邮电大学学报, 2020, 43(6): 110-117 doi: 10.13190/j.jbupt.2020-189LI Wei, PAN Ji, YAN Kang, et al. Research on frequency compatibility of collaboration-based large-scale NGSO constellations[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6): 110-117 doi: 10.13190/j.jbupt.2020-189 [14] ITU. ITU-R-REC-S. 1528 Satellite antenna radiation patterns for non-geostationary orbit satellite antennas operating in the fixed-satellite service below 30 GHz[S]. 2001. https:// www.itu.int/rec/R-REC-S.1528/_page.print [15] ITU-DB, Space network systems online[EB/OL]. (2017-06-22)[2022-02-15]. https://www.itu.int/sns/database.html -