留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁静日电离层电势分布的形态学研究

王瑜晗 任志鹏 于婷婷 刘耘博 魏勇

王瑜晗, 任志鹏, 于婷婷, 刘耘博, 魏勇. 磁静日电离层电势分布的形态学研究[J]. 空间科学学报, 2023, 43(2): 251-259. doi: 10.11728/cjss2023.02.220328032
引用本文: 王瑜晗, 任志鹏, 于婷婷, 刘耘博, 魏勇. 磁静日电离层电势分布的形态学研究[J]. 空间科学学报, 2023, 43(2): 251-259. doi: 10.11728/cjss2023.02.220328032
WANG Yuhan, REN Zhipeng, YU Tingting, LIU Yunbo, WEI Yong. Morphological Study on Magnetically Quiet-day Ionospheric Potential Distribution (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 251-259 doi: 10.11728/cjss2023.02.220328032
Citation: WANG Yuhan, REN Zhipeng, YU Tingting, LIU Yunbo, WEI Yong. Morphological Study on Magnetically Quiet-day Ionospheric Potential Distribution (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 251-259 doi: 10.11728/cjss2023.02.220328032

磁静日电离层电势分布的形态学研究

doi: 10.11728/cjss2023.02.220328032
基金项目: 中国科学院战略性先导科技专项(B类)(XDB4100000),国家自然科学基金项目(41874179, 41674158,41427901),中国科学院战略性先导科技专项(A类)(XDA17010201, XDA17010404), 中国科学院重点部署项目(ZDRY-KT-2021-3),民用航天技术预先研究项目(D020105),重大科研基础设施开放研究项目和中国博士后科学基金会(2021M703192)共同资助
详细信息
    作者简介:

    任志鹏:E-mail:zpren@mail.iggcas.ac.cn

  • 中图分类号: P352

Morphological Study on Magnetically Quiet-day Ionospheric Potential Distribution

  • 摘要: 利用理论模式GCITEM,在国际地磁参考场(IGRF)下,模拟了地磁平静条件下的电离层发电机主导的中低纬电离层电势分布,研究了太阳活动、季节、世界时和低层大气潮汐对电离层电势的调节作用。结果表明,各种条件下中低纬电势全局分布基本一致,都具有两个正电势峰值(源)和一个负电荷峰值(汇);电势分布存在明显的季节和世界时差异;中低纬电离层电势峰值差随着太阳活动的增强明显增加,并在一定太阳活动高值后趋于饱和;周日迁移潮主要影响赤道地区,导致电势峰值差增加,而半周日迁移潮主要影响中纬度地区,导致电势峰值差减小。

     

  • 图  1  地理坐标系(a)和地磁坐标系(b)下中等太阳活动下春分日00:00 UT的全球电势分布(黑色虚线为地磁0º子午面)

    Figure  1.  Global potential distribution under medium solar activity in geographic coordinate system (a) and geomagnetic coordinate system (b) at the spring equinox at 00:00 UT(The black dotted line is the geomagnetic 0o meridian plane)

    图  2  低太阳活动(a)、中等太阳活动(b)和高太阳活动(c)下秋分日00:00 UT的全球电势分布

    Figure  2.  Global potential distribution under low solar activity (a), medium solar activity geomagnetic (b), and high solar activity geomagnetic (c) at the spring equinox at 00:00 UT

    图  3  中等太阳活动条件下不同季节4个世界时的全球电势分布

    Figure  3.  Seasonal and Universal Time (UT) dependence of global potential distribution under medium solar activity

    图  4  低太阳活动下不同季节的4个世界时的全球电势分布

    Figure  4.  Seasonal and Universal Time (UT) dependence of global potential distribution under low solar activity

    图  5  高太阳活动不同季节4个世界时的全球电势分布

    Figure  5.  Seasonal and Universal Time (UT) dependence of global potential distribution under high solar activity

    图  6  中等太阳活动下06:00 UT理论模式输出的电势结果

    Figure  6.  Potential output of theoretical model under medium solar activity at 06:00 UT

  • [1] CHAPMAN S. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere[J]. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 1951, 4(1): 368-390
    [2] STENING R J. Modelling the low latitude F region[J]. Journal of Atmospheric and Terrestrial Physics, 1992, 54(11/12): 1387-1412
    [3] KAMIDE Y, BAUMJOHANN W. Magnetosphere-Ionosphere Coupling[M]. New York: Springer, 1993
    [4] WAN W X, PARKINSON M L, DYSON P L, et al. A statistical study of the interplanetary magnetic field control of sporadic E-layer occurrence in the southern polar cap ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(18): 1357-1366 doi: 10.1016/S1364-6826(99)00092-9
    [5] HEELIS R A, MAUTE A. Challenges to understanding the earth’s ionosphere and thermosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027497
    [6] IMMEL T J, HARDING B J, HEELIS R A, et al. Regulation of ionospheric plasma velocities by thermospheric winds[J]. Nature Geoscience, 2021, 14(12): 893-898 doi: 10.1038/s41561-021-00848-4
    [7] RICHMOND A D, MATSUSHITA S, TARPLEY J D. On the production mechanism of electric currents and fields in the ionosphere[J]. Journal of Geophysical Research, 1976, 81(4): 547-555 doi: 10.1029/JA081i004p00547
    [8] DAVIS T N, BURROWS K, STOLARIK J D. A latitude survey of the equatorial electrojet with rocket-borne magnetometers[J]. Journal of Geophysical Research, 1967, 72(7): 1845-1861 doi: 10.1029/JZ072i007p01845
    [9] FEJER B G. The equatorial ionospheric electric fields. A review[J]. Journal of Atmospheric and Terrestrial Physics, 1981, 43(5/6): 377-386
    [10] FEJER B G. Low latitude electrodynamic plasma drifts: a review[J]. Journal of Atmospheric and Terrestrial Physics, 1991, 53(8): 677-693 doi: 10.1016/0021-9169(91)90121-M
    [11] FEJER B G, DE PAULA E R, HEELIS R A, et al. Global equatorial ionospheric vertical plasma drifts measured by the AE‐E satellite[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A4): 5769 doi: 10.1029/94JA03240
    [12] FEJER B G, SCHERLIESS L. Empirical models of storm time equatorial zonal electric fields[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24047-24056 doi: 10.1029/97JA02164
    [13] RICHMOND A D, BLANC M, EMERY B A, et al. An empirical model of quiet‐day ionospheric electric fields at middle and low latitudes[J]. Journal of Geophysical Research: Space Physics, 1980, 85(A9): 4658-4664 doi: 10.1029/JA085iA09p04658
    [14] SCHERLIESS L, FEJER B G. Storm time dependence of equatorial disturbance dynamo zonal electric fields[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24037-34046 doi: 10.1029/97JA02165
    [15] SCHERLIESS L, FEJER B G. Radar and satellite global equatorial F region vertical drift model[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A4): 6829-6842 doi: 10.1029/1999JA900025
    [16] FEJER B G, SOUZA J R, SANTOS A S, et al. Climatology of F region zonal plasma drifts over Jicamarca[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A12): A12310 doi: 10.1029/2005JA011324
    [17] FEJER B G, JENSEN J W, SU S Y. Quiet time equatorial F region vertical plasma drift model derived from ROCSAT‐1 observations[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A5): A05304
    [18] 陈俊杰. 中低纬电离层电场时空变化特征的模拟研究[D]. 合肥: 中国科学技术大学, 2021

    CHEN Junjie. A Simulation Study on the Variations of Ionospheric Electric Fields at Low and Middle Latitudes[D]. Hefei: University of Science and Technology of China, 2021
    [19] UNTIEDT J. A model of the equatorial electrojet involving meridional currents[J]. Journal of Geophysical Research, 1967, 72(23): 5799-5810 doi: 10.1029/JZ072i023p05799
    [20] SUGIURA M, POROS D J. An improved model equatorial electrojet with a meridional current system[J]. Journal of Geophysical Research, 1969, 74(16): 4025-4034 doi: 10.1029/JA074i016p04025
    [21] 余涛, 毛田, 王云冈, 等. 二维电离层发电机理论模式及其初步应用[J]. 地球物理学报, 2014, 57(5): 1357-1365

    YU Tao, MAO Tian, WANG Yungang, et al. Two-dimension theoretical modeling of ionospheric dynamo and its preliminary application[J]. Chinese Journal of Geophysics, 2014, 57(5): 1357-1365
    [22] RICHMOND A D. Equatorial electrojet—I. Development of a model including winds and instabilities[J]. Journal of Atmospheric and Terrestrial Physics, 1973, 35(6): 1083-1103 doi: 10.1016/0021-9169(73)90007-X
    [23] TAKEDA M, MAEDA H. Three‐dimensional structure of ionospheric currents 1. Currents caused by diurnal tidal winds[J]. Journal of Geophysical Research: Space Physics, 1980, 85(A12): 6895-6899 doi: 10.1029/JA085iA12p06895
    [24] MAUTE A. Thermosphere-ionosphere-electrodynamics general circulation model for the ionospheric connection explorer: TIEGCM-ICON[J]. Space Science Reviews, 2017, 212(1/2): 523-551
    [25] CHEN J J, LEI J H. A simulation study on the latitudinal variations of ionospheric zonal electric fields under geomagnetically quiet conditions[J]. Journal of Geophysical Research: Space Physics, 2019, 124(2): 1444-1453 doi: 10.1029/2018JA026174
    [26] CHEN J J, WANG W B, LEI J H, et al. The physical mechanisms for the sunrise enhancement of equatorial ionospheric upward vertical drifts[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA028161
    [27] ZHOU X, LIU H L, LU X, et al. Quiet-time day-to-day variability of equatorial vertical E × B drift from atmosphere perturbations at dawn[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027824
    [28] CRAIN D J, HEELIS R A, BAILEY G J, et al. Low‐latitude plasma drifts from a simulation of the global atmospheric dynamo[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A4): 6039-6046 doi: 10.1029/92JA02196
    [29] CRAIN D J, HEELIS R A, BAILEY G J. Effects of electrical coupling on equatorial ionospheric plasma motions: when is the F region a dominant driver in the low‐latitude dynamo?[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A4): 6033-6037 doi: 10.1029/92JA02195
    [30] 徐文耀, 夏庆, 李卫东. 全球电离层发电机方程的一种数值解法[J]. 空间科学学报, 1994, 14(3): 205-209

    XU Wenyao, XIA Qing, LI Weidong. A numerical solution of the dynamo equation for the global ionosphere[J]. Chinese Journal of Space Science, 1994, 14(3): 205-209
    [31] 余涛. 中低纬电离层电场的模拟研究及电场对电离层年度变化的影响[D]. 武汉: 中国科学院武汉数学与物理研究所, 2003

    YU Tao. Numerical Study of the Ionospheric Electric Field at Mid- and Low Latitudes and It's Influence on the Ionospheric Annual and Semi-annual Variations[D]. Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 2003
    [32] 余涛, 万卫星, 刘立波, 等. 电离层电场半年变化的模拟研究[J]. 空间科学学报, 2004, 24(3): 182-193 doi: 10.3969/j.issn.0254-6124.2004.03.003

    YU Tao, WAN Weixing, LIU Libo, et al. Numerical study for the semi-annual variation of electric fields at the mid- and low-latitudes[J]. Chinese Journal of Space Science, 2004, 24(3): 182-193 doi: 10.3969/j.issn.0254-6124.2004.03.003
    [33] 沈长寿, 资民筠, 王劲松, 等. 关于暴时电离层电流分布的南北半球不对称性[J]. 地球物理学报, 2006, 49(6): 1573-1581

    SHEN Changshou, ZI Minyun, WANG Jinsong, et al. On the asymmetry of the storm-time current system in the ionosphere between southern and northern hemispheres[J]. Chinese Journal of Geophysics, 2006, 49(6): 1573-1581
    [34] 任志鹏, 万卫星, 魏勇, 等. 基于真实地磁场的中低纬电离层电场理论模式[J]. 科学通报, 2008, 53(24): 3883-3890 doi: 10.3321/j.issn:0023-074X.2008.18.014

    REN Zhipeng, WAN Weixing, WEI Yong, et al. A theoretical model for mid- and low-latitude ionospheric electric fields in realistic geomagnetic fields[J]. Chinese Science Bulletin, 2008, 53(24): 3883-3890 doi: 10.3321/j.issn:0023-074X.2008.18.014
    [35] 庄洪春. 空间电学[M]. 北京: 科学出版社, 1995: 192

    ZHUANG Hongchun. Space Electricity[M]. Beijing: Science Press, 1995: 192
    [36] REN Z P, WAN W X, LIU L B. GCITEM-IGGCAS: a new global coupled ionosphere–thermosphere-electrodynamics model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(17/18): 2064-2076
    [37] VANZANDT T E, CLARK W L, WARNOCK J M. Magnetic apex coordinates: a magnetic coordinate system for the ionospheric F2 layer[J]. Journal of Geophysical Research, 1972, 77(13): 2406-2411 doi: 10.1029/JA077i013p02406
    [38] BATISTA I S, DE MEDEIROS R T, ABDU M A, et al. Equatorial ionospheric vertical plasma drift model over the Brazilian region[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A5): 10887-10892 doi: 10.1029/95JA03833
    [39] HARTMAN W A, HEELIS R A. Longitudinal variations in the equatorial vertical drift in the topside ionosphere[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A3): A03305
  • 加载中
图(6)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  93
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-05-16
  • 修回日期:  2022-11-09
  • 网络出版日期:  2023-04-01

目录

    /

    返回文章
    返回