Evaluation of Orbit Determination Accuracy in Interplanetary Transfer Section of Mars Probe
-
摘要: 天问一号是中国第一次实现地火转移行星际飞行的探测器,在长达202天的行星际转移飞行期间,共经历了4次中途修正及1次深空机动控制,在2021年2月10日成功进行了近火制动,被火星捕获而进入环火轨道。本文对探测器行星际转移期间的动力学模型进行了分析,制定了转移飞行期间定轨积分中心转换原则:在探测器飞出地球影响球后,定轨积分中心需要由地心更换为日心;对不同版本行星星历表的使用进行了分析,确定了使用DE436行星历表进行计算对定轨影响最小。根据探测器行星际转移飞行的特点,制定了一种基于逐日迭代定轨策略的精度评估方法。基于实测数据分析,验证了该方法的有效性,火星探测器行星际转移期间定轨位置误差优于2 km,速度误差优于20 mm·s–1 (1σ)。Abstract: Tianwen-1 is the first Chinese probe to realize interplanetary flight between Earth and Mars. During the 202-day long interplanetary transfer flight, it experienced four midway corrections and one deep space maneuver control. On 10 February 2021, it successfully applied braking near Mars and was captured by Mars. This paper, the dynamic model during interplanetary transfer is analyzed, and the principle of celestial center conversion during transfer flight is formulated. It is necessary to replace the celestial center with the Sun after leaving the Earth’s influence sphere. According to the analysis results, DE436 ephemeris is determined to be used, because it has the least impact on orbit determination. Based on the characteristics of the interplanetary transfer flight of the probe, this paper proposes an accuracy evaluation method based on a daily iterative orbit determination strategy. Based on the analysis of measured data, the effectiveness of this method has been verified. During the interplanetary transfer of the Mars probe, the orbit determination position error is better than 2 km, and the velocity error is better than mm·s–1 (1σ).
-
表 1 不同行星历表下定轨预报误差
Table 1. Orbit determination prediction error under different ephemeris
比较项目 定轨 预报 位置误
差/m速度误
差/(m·s–1)位置误
差/m速度误
差/(m·s–1)DE421 VSDE436 261.4351 0.0000006 306.4832 0.0207 DE405 VSDE436 1172.0748 0.0002 2238.2650 0.0930 表 2 行星际转移轨道探测器动力学模型及参数
Table 2. Dynamics model and parameters of explorer in transfer orbit
积分中心 动力学 模型 参数 地球 地球质点 J2000地心惯性系 - 地球非球形 JGM-3 8×8阶次 日月及大行星 第三体引力 JPL-DE436历表 太阳 太阳光压 固定面质比 初值Cr = 1.34 太阳质点 J2000日心惯性系 - 大行星及月球 第三体引力 JPL-DE436历表 后牛顿效应 广义相对论 JPL-DE436历表 太阳光压 固定面质比 初值Cr = 1.34 表 3 火星探测器行星际转移轨道定轨数据使用的选择情况分析
Table 3. Analysis on the selection of orbit determination data for interplanetary transfer orbit of Mars probe
数据使用策略 误差统计 位置/m 速度/(m·s–1) 测距、测速
时延率60209.2 0.057 测距、测速
时延161.5 0.0002 测距、测速 60309.1 0.059 测速
时延、时延率1864324.0 0.102 测距
时延、时延率74.8 0.0001 表 4 天问一号探测器行星际转移段关键事件
Table 4. Orbit control time of the interplanetary transfer phase of “Tianwen-1” probe
序号 时间(BJT) 关键事件 1 2020-07-23 13:17 发射 2 2020-08-02 07:00 第一次中途修正 3 2020-09-20 23:00 第二次中途修正 4 2020-10-09 23:08 深空机动 5 2020-10-28 22:00 第三次中途修正 6 2021-02-05 20:00 第四次中途修正 7 2021-02-10 20:00 近火制动 -
[1] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2): 108-113YU Dengyun, SUN Zezhou, MENG Linzhi, et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113 [2] 吴季, 朱光武, 赵华, 等. 萤火一号火星探测计划的科学目标[J]. 空间科学学报, 2009, 29(5): 449-455 doi: 10.11728/cjss2009.05.449WU Ji, ZHU Guangwu, ZHAO Hua, et al. Overview of scientific objectives of China-Russia joint Mars exploration program YH-1[J]. Chinese Journal of Space Science, 2009, 29(5): 449-455 doi: 10.11728/cjss2009.05.449 [3] 耿言, 周继时, 李莎, 等. 我国首次火星探测任务[J]. 深空探测学报, 2018, 5(5): 399-405GENG Yan, ZHOU Jishi, LI Sha, et al. A brief introduction of the first mars exploration mission in China[J]. Journal of Deep Space Exploration, 2018, 5(5): 399-405 [4] ANTREASIAN P G, BAIRD D T, BORDER J S, et al. 2001 mars odyssey orbit determination during interplanetary cruise[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 394-405 doi: 10.2514/1.15222 [5] 曹建峰, 胡松杰, 黄勇, 等. 嫦娥二号卫星日地拉格朗日L2点探测轨道定轨分析[J]. 武汉大学学报·信息科学版, 2013, 38(9): 1029-1033CAO Jianfeng, HU Songjie, HUANG Yong, et al. Orbit determination and analysis for Chang'E-2 extended mission[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1029-1033 [6] 曹建峰, 刘磊, 刘勇, 等. 嫦娥二号再拓展试验测定轨精度研究[J]. 飞行器测控学报, 2012, 31(4): 84-89CAO Jianfeng, LIU Lei, LIU Yong, et al. Orbit determination analysis for CE-2 second extended mission[J]. Journal of Spacecraft TT& C Technology, 2012, 31(4): 84-89 [7] HU S J, CAO J F. Accuracy simulation of orbit determination for YH-1[C]//62 nd International Astronautical Congress 2011. Cape Town: IAC, 2011 [8] 黄勇, 胡小工, 曹建锋, 等. 上海天文台火星卫星定轨软件系统[J]. 飞行器测控学报, 2009, 28(6): 83-89HUANG Yong, HU Xiaogong, CAO Jianfeng, et al. The mars satellite orbit determination software at shanghai astronomical observatory[J]. Journal of Spacecraft TT& C Technology, 2009, 28(6): 83-89 [9] 叶茂, 李斐, 鄢建国, 等. 深空探测器精密定轨与重力场解算系统(WUDOGS)及其应用分析[J]. 测绘学报, 2017, 46(3): 288-296YE Mao, LI Fei, YAN Jianguo, et al. Wuhan university deep-space orbit determination and gravity recovery system (WUDOGS) and its application analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 288-296 [10] 鄢建国, 李斐, 平劲松. 基于MGS测图段部分弧段的精密定轨及火星重力场模型解算[J]. 测绘学报, 2010, 39(5): 484-490,496YAN Jianguo, LI Fei, PING Jinsong. Precision orbit determination of MGS mapping phase arcs and Martian gravity field model solution[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 484-490,496 [11] 王文彬, 高扬. 精密定轨中三类经验加速度的有效建模方法[J]. 宇航学报, 2015, 36(12): 1406-1413WANG Wenbin, GAO Yang. Modeling and analysis of three types of empirical accelerations in precise orbit determination[J]. Journal of Astronautics, 2015, 36(12): 1406-1413 [12] 唐歌实, 李勰. 载人航天轨道确定技术及在交会对接中的应用[M]. 北京: 国防工业出版社, 2013TANG Geshi, LI Xie. Orbit Determination Technology of Manned Spacecraft and Application in Rendenzvous and Docking[M]. Beijing: National Defense Industry Press, 2013 [13] 曹建峰, 胡松杰, 黄勇, 等. “嫦娥二号”卫星拓展试验轨道计算中心天体的选取[J]. 中国空间科学技术, 2013, 33(2): 13-18CAO Jianfeng, HU Songjie, HUANG Yong, et al. Selection of integration center for Chang’E-2 satellite extended mission[J]. Chinese Space Science and Technology, 2013, 33(2): 13-18 [14] 李杰. 火星探测器行星际定轨研究[D]. 郑州: 解放军信息工程大学, 2011LI Jie. Research on Mars Probe Interplanetary Orbit Determination[D]. Zhengzhou: Information Engineering University, 2011 [15] 段成林, 张宇, 韩意, 等. “天问一号”太阳等离子体延迟误差分析与修正[J]. 深空探测学报(中英文), 2021, 8(6): 592-599DUAN Chenglin, ZHANG Yu, HAN Yi, et al. Analysis of delay error correction of solar plasma region on Tianwen-1[J]. Journal of Deep Space Exploration, 2021, 8(6): 592-599 [16] 任红飞, 郝晓龙, 周庆勇. 两类行星历表的分析比较[J]. 测绘科学与工程, 2014, 34(1): 9-16REN Hongfei, HAO Xiaolong, ZHOU Qingyong. Analysis and comparison of two types of planetary ephemerides[J]. Geomatic Science and Engineering, 2014, 34(1): 9-16 [17] 邓雪梅, 樊敏, 谢懿. JPL行星历表的比较及评估[J]. 天文学报, 2013, 54(6): 550-561 doi: 10.3969/j.issn.0001-5245.2013.06.005DENG Xuemei, FAN Min, XIE Yi. Comparisons and evaluations of JPL ephemerides[J]. Acta Astronomica Sinica, 2013, 54(6): 550-561 doi: 10.3969/j.issn.0001-5245.2013.06.005 [18] 张文昭, 平劲松, 李文潇. 3种典型的太阳系大行星历表的对比分析[J]. 中国科学院大学学报, 2021, 38(1): 114-120ZHANG Wenzhao, PING Jinsong, LI Wenxiao. Comparison and analysis of three kinds of typical solar system planetary ephemeris[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(1): 114-120 [19] 段建锋. 基于光压修正模型的地月L2点绕飞探测器轨道改进研究[D]. 北京: 清华大学, 2019DUAN Jianfeng. Research on Orbit Determination of Probe Around Earth-Moon Libration L2 Point Based on Solar Pressure Correction Model[D]. Beijing: Tsinghua University, 2019 [20] 曹建峰, 黄勇, 胡小工, 等. 利用中国VLBI网实现对“火星快车”的测定轨[J]. 科学通报, 2010, 55(27/28): 2659-2666CAO Jianfeng, HUANG Yong, HU Xiaogong, et al. Mars express tracking and orbit determination trial with Chinese VLBI network[J]. Chinese Science Bulletin, 2010, 55(27/28): 2659-2666 [21] 刘庆会, 吴亚军, 黄勇, 等. 基于同波束VLBI的火星车测定位技术[J]. 中国科学: 物理学 力学 天文学, 2015, 45(9): 099502LIU Qinghui, WU Yajun, HUANG Yong, et al. Mars rover positioning technology based on same-beam VLBI[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(9): 099502 [22] 刘庆会. 同波束VLBI技术在深空探测器测定轨中的应用[J]. 遥测遥控, 2016, 37(6): 36-44LIU Qinghui. Applications of same-beam VLBI technology in orbit determination of deep space satellites[J]. Journal of Telemetry, Tracking and Command, 2016, 37(6): 36-44 [23] 刘庆会, 昌胜骐, 黄勇, 等. 火星探测器跟踪及VLBI测定轨分析[J]. 中国科学: 物理学 力学 天文学, 2017, 47(9): 099504LIU Qinghui, CHANG Shengqi, HUANG Yong, et al. Mars spacecraft tracking and analysis of VLBI orbit determination[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(9): 099504 [24] 杨永章, 李金岭, 平劲松, 等. NASA历表在深空导航中的发展和比较[J]. 深空探测学报, 2017, 4(1): 89-98YANG Yongzhang, LI Jinling, PING Jinsong, et al. Development and comparison of the JPL ephemerides in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(1): 89-98 [25] 曹建峰, 黄勇, 胡小工, 等. 深空探测中多普勒的建模与应用[J]. 宇航学报, 2011, 32(7): 1583-1589CAO Jianfeng, HUANG Yong, HU Xiaogong, et al. Modeling and application of doppler data in deep space exploration[J]. Journal of Astronautics, 2011, 32(7): 1583-1589 [26] 曹建峰, 黄勇, 刘磊, 等. 深空探测器三程多普勒建模与算法实现[J]. 宇航学报, 2017, 38(3): 304-309CAO Jianfeng, HUANG Yong, LIU Lei, et al. Modeling and algorithm realization of three-way Doppler for deep space exploration[J]. Journal of Astronautics, 2017, 38(3): 304-309 -
-