留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016HO3探测任务星载光学观测量建模及定轨

黄皓 刘山洪 曹建峰 李勰 高健

黄皓, 刘山洪, 曹建峰, 李勰, 高健. 2016HO3探测任务星载光学观测量建模及定轨[J]. 空间科学学报, 2023, 43(3): 521-530. doi: 10.11728/cjss2023.03.2022-0026
引用本文: 黄皓, 刘山洪, 曹建峰, 李勰, 高健. 2016HO3探测任务星载光学观测量建模及定轨[J]. 空间科学学报, 2023, 43(3): 521-530. doi: 10.11728/cjss2023.03.2022-0026
HUANG Hao, LIU Shanhong, CAO Jianfeng, LI Xie, GAO Jian. Optical Observations and Its Application on Orbit Determination for 2016HO3 Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 521-530 doi: 10.11728/cjss2023.03.2022-0026
Citation: HUANG Hao, LIU Shanhong, CAO Jianfeng, LI Xie, GAO Jian. Optical Observations and Its Application on Orbit Determination for 2016HO3 Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 521-530 doi: 10.11728/cjss2023.03.2022-0026

2016HO3探测任务星载光学观测量建模及定轨

doi: 10.11728/cjss2023.03.2022-0026 cstr: 32142.14.cjss2023.03.2022-0026
基金项目: 国家自然科学基金项目(U2031209,11973015)和航天飞行动力学技术重点实验室基金项目(KJW6142210210105,KJW6142210210201)共同资助
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: P228.1

Optical Observations and Its Application on Orbit Determination for 2016HO3 Exploration

  • 摘要: 以中国首次小行星探测任务为背景,根据星载相机获取的光学影像构造三种观测量,分别为小行星相对于航天器的高度角和方位角、赤经赤纬以及探测器与行星/小行星之间的夹角,分析了其在探测器定轨中的作用。仿真定轨结果表明,观测时长为100 h,探测器三轴位置误差小于50 km,满足工程上对巡航段的轨道精度要求,但xy方向的位置和速度分量具有较强自相关性。此外还发现,使用单一观测数据类型比联合观测量的定轨精度低3~4个量级,第三类观测量相对于其他两类观测量在定轨精度方面具有显著作用,这表明在2016HO3探测中,利用太阳系大天体的位置信息有助于约束探测器轨道,提高探测器的定轨精度。

     

  • 图  1  三种光学观测量

    Figure  1.  Three types of optical observation

    图  2  J2000.0日心黄道坐标系下2016HO3轨道的演化

    Figure  2.  2016HO3 orbit evolution in J2000.0 ecliptic coordinate system

    图  3  太阳、土星、地球及2016HO3相对于探测器的观测夹角

    Figure  3.  Angle between the Sun, 2016HO3, Earth and Saturn relative to the spacecraft

    图  4  探测器、2016HO3和土星相对地球的位置

    Figure  4.  Orbit of spacecraft, 2016HO3 and Saturn with repesct to the Earth

    图  5  三种观测量误差

    Figure  5.  Three-type observation error

    图  6  定轨误差与观测时长关系

    Figure  6.  Relationship between orbit determination accuracy and the observation time

    图  7  误差椭圆和定轨误差

    Figure  7.  Error ellipse and orbit determination error

    图  8  添加三方向系统误差(蓝色直方图为300次蒙特卡罗仿真的概率分布,红色曲线为由仿真案例中轨道误差的标准差和均值绘制的高斯分布曲线)

    Figure  8.  Adding system error in position (In each subplot, the blue histogram indicates the probability density of a 300-time Monte Carlo simulation. The red line represents the Gaussian distribution derived from the standard deviation and average value of the datasets)

    图  10  叠加系统误差(说明同图8

    Figure  10.  Adding both observation and position system error (The description is as same as that in Fig. 8)

    图  9  添加观测量系统误差(说明同图8

    Figure  9.  Adding observation system error (The description is as same as that in Fig. 8)

    图  11  定轨精度随观测间隔和观测组数的变化

    Figure  11.  Relationship between the orbit determination accuracy and the observation’s interval and length

    表  1  导航相机参数

    Table  1.   Navigation camera parameter

    相机参数数值
    焦距/mm15.0
    视场/(o)29.8
    像素提取误差/pixel0.01
    相机指向误差/rad1.0×10–5
    像素转换信息/(pixel·mm–1)250.0
    下载: 导出CSV

    表  2  考虑系统误差与不考虑时定轨精度($ 1\mathrm{\sigma } $)的对比结果

    Table  2.   Comparison results of orbit determination accuracy ($ 1\mathrm{\sigma } $) when considering systematic error and not

    案例系统误差$ x/\mathrm{k}\mathrm{m} $$ y/\mathrm{k}\mathrm{m} $$ z/\mathrm{k}\mathrm{m} $vx/(m·s–1)vy/(m·s–1)vz/(m·s–1)
    A三方向20 km45.8342.9119.560.230.210.09
    B观测量$0.1'' $48.7446.5945.330.230.220.23
    C叠加42.8240.2217.540.210.190.08
    D不添加45.5742.8518.700.220.210.09
    下载: 导出CSV

    表  3  组合观测量定轨精度($1\mathrm{\sigma } $)结果

    Table  3.   Orbit determination accuracy ($1\mathrm{\sigma } $) results based on combined observations

    模型$ x/\mathrm{k}\mathrm{m} $$ y/\mathrm{k}\mathrm{m} $$ z/\mathrm{k}\mathrm{m} $vx/(m·s–1)vy/(m·s–1)vz/(m·s–1)
    模型1$ 10.64\times {10}^{5} $$ 97.50\times {10}^{4} $$ 33.27\times {10}^{4} $54.70256.17153.21
    模型2$ 68.10\times {10}^{4} $$ 62.37\times {10}^{4} $$ 21.28\times {10}^{4} $34.69164.0298.05
    模型3$ 10.37\times {10}^{3} $$ 62.93\times {10}^{2} $$ 26.47\times {10}^{3} $16.6710.5536.09
    模型1,2$ 50.02\times {10}^{4} $$ 45.81\times {10}^{4} $$ 15.63\times {10}^{4} $26.00120.0371.87
    模型1,350.0549.5725.700.250.240.12
    模型2,349.0946.6621.950.240.220.10
    下载: 导出CSV
  • [1] JI Jianghui, WANG Su. China’s Future Missions for Deep Space Exploration and Exoplanet Space Survey by 2030. Chin. J. Space Sci. , 2020, 40(5): 729-731.
    [2] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2): 1-9

    LI J F, CUI W, BAOYIN H X. A survey of autonomous navigation for deep space exploration[J]. Mechanics in Engineering, 2012, 34(2): 1-9
    [3] 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1-15

    FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control Detection, 2018, 1(1): 1-15
    [4] DRAPER C, WRIGLEY W, HOAG G, et al. Space navigation guidance and control, Vol. 1, of 2. NASA-CR-75543, 1965
    [5] BHASKARAN S, RIEDEL J E, SYNNOTT S P, et al. The deep space 1 autonomous navigation system-a post-flight analysis[C]//AIAA/AAS Astrodynamics Specialist Conference. Denver, CO, USA: AIAA, 2000
    [6] BHASKARAN S, DESAI S, DUMONT P, et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Univelt, Inc., San Diego, CA, 1998, pp. 1295–1314
    [7] TSUDA Y, TAKEUCHI H, OGAWA N, et al. Rendezvous to asteroid with highly uncertain ephemeris: Hayabusa2’s Ryugu-approach operation result[J]. Astrodynamics, 2020, 4(2): 137-147 doi: 10.1007/s42064-020-0074-9
    [8] DE LA FUENTE MARCOS C, DE LA FUENTE MARCOS R. Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462(4): 3441-3456 doi: 10.1093/mnras/stw1972
    [9] 田伟. 小行星(469219)Kamo`oalewa轨道的确定与误差分析[J]. 天文学报, 2021, 62(2): 16

    TIAN W. Orbit Determination of the asteroid (469219) Kamo`oalewa and its error analysis[J]. Acta Astronomica Sinica, 2021, 62(2): 16
    [10] WANG M, CHENG Y F, YANG B, et al. On-orbit calibration approach for optical navigation camera in deep space exploration[J]. Optics Express, 2016, 24(5): 5536-5554 doi: 10.1364/OE.24.005536
    [11] FEHLBERG E. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize controlR[R]. Washington: National Aeronautics and Space Administration, 1968
    [12] ACTON JR C H. Ancillary data services of NASA’s navigation and ancillary information facility[J]. Planetary and Space Science, 1996, 44(1): 65-70 doi: 10.1016/0032-0633(95)00107-7
    [13] 黄翔宇, 黄江川, 李骥, 等. 基于图像测量数据的目标接近段自主导航方法研究与试验[J]. 中国科学: 技术科学, 2013, 43(7): 748-754 doi: 10.1360/092013-481

    HUANG X Y, HUANG J C, LI J, et al. Autonomous navigation for the approach phase based on image measurement data[J]. Sci Sin Tech, 2013, 43(7): 748-754 doi: 10.1360/092013-481
    [14] 崔文, 张少愚, 张树瑜, 等. 火星探测接近段的光学自主导航研究[J]. 空间科学学报, 2013, 33(3): 313-319 doi: 10.11728/cjss2013.03.313

    CUI W, ZHANG S Y, ZHANG S Y, et al. Research on optical autonomous navigation for approach phase of Mars exploration[J]. Chinese Journal of Space Science, 2013, 33(3): 313-319 doi: 10.11728/cjss2013.03.313
    [15] WATANABE S I, TSUDA Y, YOSHIKAWA M, et al. Hayabusa2 mission overview[J]. Space Science Reviews, 2017, 208(1/2/3/4): 3-16
    [16] RIZK B, D’AUBIGNY C D, GOLISH D, et al. OCAMS: the OSIRIS-REx camera suite[J]. Space Science Reviews, 2018, 214(1): 26 doi: 10.1007/s11214-017-0460-7
    [17] KELLER H U, BARBIERI C, LAMY P, et al. OSIRIS–the scientific camera system onboard Rosetta[J]. Space Science Reviews, 2007, 128(1/2/3/4): 433-506
    [18] SUN J, LI G R, WEN D S, et al. A sub-pixel centroid algorithm for star image based on Gaussian distribution[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 53(182): 307-310 doi: 10.2322/tjsass.53.307
    [19] HØG E, FABRICIUS C, MAKAROV V V, et al. The Tycho-2 catalogue of the 2.5 million brightest stars[J]. Astronomy and Astrophysics, 2000, 355(1): L27-L30
    [20] ENRIGHT J, SINCLAIR D, GRANT C, et al. Towards star tracker only attitude estimation[C]//24th Annual AIAA/USU Conference on Small Satellites, Technical Session X, Logan, UT, USA, 9–12 August 2010; Volume 55. 2010
    [21] PARK R S, FOLKNER W M, WILLIAMS J G, et al. The JPL planetary and lunar ephemerides DE440 and DE441[J]. The Astronomical Journal, 2021, 161(3): 105 doi: 10.3847/1538-3881/abd414
    [22] 刘山洪, 鄢建国, 杨轩, 等. 水星探测器精密定轨软件研制及应用[J]. 武汉大学学报(信息科学版), 2019, 44(4): 510-517

    LIU S H, YAN J G, YANG X, et al. Development of mercury precise orbit determination software and application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517
    [23] TATSUMI E, KOUYAMA T, SUZUKI H, et al. Updated inflight calibration of Hayabusa2’s optical navigation camera (ONC) for scientific observations during the cruise phase[J]. Icarus, 2019, 325: 153-195 doi: 10.1016/j.icarus.2019.01.015
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  342
  • PDF下载量:  85
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-12-21

目录

    /

    返回文章
    返回