留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DAM大气模型构建与验证

刘卫 罗冰显 龚建村 贺泉 王荣兰 向开恒

刘卫, 罗冰显, 龚建村, 贺泉, 王荣兰, 向开恒. DAM大气模型构建与验证[J]. 空间科学学报, 2023, 43(3): 475-484. doi: 10.11728/cjss2023.03.2023-0007
引用本文: 刘卫, 罗冰显, 龚建村, 贺泉, 王荣兰, 向开恒. DAM大气模型构建与验证[J]. 空间科学学报, 2023, 43(3): 475-484. doi: 10.11728/cjss2023.03.2023-0007
LIU Wei, LUO Bingxian, GONG Jiancun, HE Quan, WANG Ronglan, XIANG Kaiheng. Construction and Verification of DAM Model (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 475-484 doi: 10.11728/cjss2023.03.2023-0007
Citation: LIU Wei, LUO Bingxian, GONG Jiancun, HE Quan, WANG Ronglan, XIANG Kaiheng. Construction and Verification of DAM Model (in Chinese). Chinese Journal of Space Science, 2023, 43(3): 475-484 doi: 10.11728/cjss2023.03.2023-0007

DAM大气模型构建与验证

doi: 10.11728/cjss2023.03.2023-0007 cstr: 32142.14.cjss2023.03.2023-0007
基金项目: 中国科学院重点部署项目资助(ZDRE-KT-2021-3)
详细信息
    作者简介:
  • 中图分类号: P351

Construction and Verification of DAM Model

  • 摘要: 根据热层物理、经验模型原理和代码分析,研究模型构建方法。进而剖析国内热层大气探测和热层模型构建现状,提出存在的困难和未来的发展思路。以GOST模型为基础,分析模型的工作机制、地磁扰动期大气密度预报误差来源和密切相关的模型系数,推导模型密度对相关模型系数的偏导数矩阵。利用天基实测密度,有针对性地构建磁暴期大气模型(DAM)。并通过独立于建模的实测密度数据,验证DAM模型性能。统计发现,地磁活动指数Ap介于100~132时GOST, MSIS00和DAM模型的相对误差均值依次为64.32%,–176.72%,–14.83%。Ap指数80~132时,相对误差均值对应为77.44%,–136.74%,–14.14%,DAM模型性能较GOST和MSIS00均有明显提升。证明通过搭建大气模型框架和实测密度数据估计模型参数的建模方法是可行和有效的。

     

  • 图  1  GOST, DAM和MSIS00模型预报残差(a)和误差百分比(b)

    Figure  1.  Prediction residual (a) and error percentage (b) of GOST, DAM and MSIS00 model

    图  2  GOST,DAM,MSIS00模型预报与实测密度

    Figure  2.  GOST, DAM, MSIS00 model prediction and measured density

    图  3  基于数据集 1 评估的各模型预报残差 (a) 与误差百分比 (b)

    Figure  3.  Prediction residual (a) and error percentage (b) of each model based on evaluation data set 1

    图  4  数据集2评估的GOST,DAM和MSIS00模型预报残差(a)和误差百分比(b)

    Figure  4.  Prediction residual (a) and error percentage (b) of GOST, DAM and MSIS00 model with evaluation data set 2

    表  1  GOST模型参数(180<h<600 km)

    Table  1.   Parameters of GOST model

    F075100125150175200250
    a1–1.5560×101–1.5640×101–1.522×101–1.69752×101–1.7304×101–1.8266×101–1.92782×101
    a28.248×10–17.754×10–17.569×10–16.736×10–16.382×10–15.797×10–15.118×10–1
    a37.69132×1016.79162×1015.58165×1018.5444×1018.19596×1011.009417×1011.165792×101
    d1–1.721×10–1–1.721×10–1–1.721×10–1–1.721×10–1–1.721×10–1–1.721×10–1–1.721×10–1
    d25.756×10–35.756×10–35.756×10–35.756×10–35.756×10–35.756×10–35.756×10–3
    d3–3.635×10–6–3.635×10–6–3.635×10–6–3.635×10–6–3.635×10–6–3.635×10–6–3.635×10–6
    b1–8.607×10–1–7.54×10–1–5.7×10–1–4.76×10–1–2.92×10–1–3.113×10–1–3.307×10–1
    b27.861×10–36.85×10–35.25×10–34.4×10–32.80×10–32.839×10–32.878×10–3
    b3–5.711×10–6–4.6×10–6–3.0×10–6–2.40×10–6–8.0×10–6–1.089×10–6–1.378×10–6
    c11.27911.27911.29031.29032.057×10–12.057×10–11.499×10–3
    c2–1.576×10–2–1.576×10–2–1.547×10–2–1.547×10–2–2.912×10–3–2.911×10–3–2.399×10–4
    c36.499×10–56.499×10–55.964×10–55.964×10–51.739×10–51.739×10–57.006×10–6
    c4–5.145×10–8–5.145×10–8–4.503×10–8–4.503×10–8–8.565×10–9–8.565×10–9–5.999×10-10
    e1–2.152×10–1–2.162×10–1–1.486×10–1–1.495×10–1–8.19×10–2–8.286×10–2–2.048×10–1
    e24.167×10–34.086×10–33.263×10–33.182×10–32.358×10–32.278×10–33.596×10–3
    e31.587×10–61.27×10–63.143×10–62.825×10–64.698×10–64.381×10–6–1.587×10–6
    e4–1.651×10–9–1.587×10–9–3.429×10–9–3.365×10–9–5.206×10–9–5.143×10–93.175×10-10
    e5–1.2×10–1–1.2×10–1–1.0×10–1–1.0×10–1–1.3×10–1–1.1×10–1–9.0×10–2
    e65.0×10–32.5×10–22.083×10–22.75×10–24.389×10–23.81×10–23.117×10–2
    e71.5×10–27.5×10–36.25×10–33.75×10–31.821×10–31.178×10–39.662×10–4
    l1–1.698×10–2–1.249×10–2–7.879×10–3–4.882×10–3–5.195×10–3–5.017×10–3–5.455×10–3
    l21.448×10–41.111×10–47.258×10–54.692×10–54.664×10–54.282×10–54.273×10–5
    l3–9.535×10–8–7.706×10–8–3.658×10–8–1.742×10–8–2.164×10–8–2.132×10–8–2.273×10–8
    下载: 导出CSV

    表  2  GOST模型半周年效应相关参数

    Table  2.   Parameters related to the semi-annual effect

    dA(d)dA(d)dA(d)
    0–0.0281300.0132600.015
    10–0.045140–0.0372700.07
    20–0.047150–0.0862800.115
    30–0.035160–0.1282900.144
    40–0.011170–0.1623000.155
    500.022180–0.1853100.145
    600.057190–0.1993200.120
    700.090200–0.2023300.084
    800.114210–0.1933400.044
    900.125220–0.1733500.006
    1000.118230–0.140360–0.023
    1100.096240–0.096370–0.04
    1200.060250–0.042
    下载: 导出CSV

    表  3  GOST与DAM模型系数

    Table  3.   Parameters comparison of GOST and DAM

    参数$ \mathrm{G}\mathrm{O}\mathrm{S}\mathrm{T} $$ \mathrm{D}\mathrm{A}\mathrm{M} $参数$ \mathrm{G}\mathrm{O}\mathrm{S}\mathrm{T} $$ \mathrm{D}\mathrm{A}\mathrm{M} $
    a118.266–17.37078425n01.51.5
    a20.57970.54020803n10.0060.006
    a310.0941710.09417e1–0.08286–0.086750778
    d1–0.1721–0.1721e20.0022780.002907369
    d20.0057560.005756e34.38×10–65.43×10–6
    d3–3.64×10–6–3.64×10–6e4–5.14×10–9–3.98×10–9
    l1–0.005017–0.005017e5–0.11–0.11880196
    l24.28×10–54.28×10–5e60.03810.030412034
    l3–2.13×10–8–2.13×10–8e70.0011780.000911514
    c10.20570.2057b1–0.3113–0.385954838
    c2–0.002911–0.002911b20.0028390.002566231
    c31.74×10–51.74×10–5b3–1.09×10–6–1.34×10–6
    c4–8.57×10–9–8.57×10–9$ {\varphi }_{B} $0.55850.5585
     黑色字体表示建模确定的 12 个待估参数。
    下载: 导出CSV

    表  4  基于校正数据集评估的地磁扰动期模型预报性能

    Table  4.   Performance of each model in disturbed period based on correction data set

    模型名称相对误差均值μ/(%)相对误差标准差σ/(%)
    GOST84.997.66
    MSIS00–57.84108.20
    DAM24.9438.38
    下载: 导出CSV

    表  5  基于数据集 1 评估的地磁扰动期各模型预报性能

    Table  5.   Performance of each model in disturbed period based on evaluation data set 1

    模型名称相对误差均值μ/(%)相对误差标准差σ/(%)
    GOST64.3220.22
    MSIS00–176.72161.35
    DAM–14.8363.70
    下载: 导出CSV

    表  6  基于数据集 2 评估的地磁扰动期各模型预报性能

    Table  6.   Performance of each model in disturbed period based on evaluation data set 2

    模型名称相对误差均值μ/(%)相对误差标准差σ/(%)
    GOST77.4411.10
    MSIS00–136.74155.91
    DAM–14.1456.31
    下载: 导出CSV
  • [1] PRIESTER W, RÖEMER M, VOLLAND H. The physical behavior of the upper atmosphere deduced from satellite drag data[J]. Space Science Reviews, 1967, 6(6): 707-780
    [2] HARRIS I, PRIESTER W. Time-dependent structure of the upper atmosphere[J]. Journal of the Atmospheric Sciences, 1962, 19(4): 286-301 doi: 10.1175/1520-0469(1962)019<0286:TDSOTU>2.0.CO;2
    [3] JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9): 213-257 doi: 10.5479/si.00810231.8-9.213
    [4] BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu: AIAA, 2008
    [5] MARCOS F A. Accuracy of atmospheric drag models at low satellite altitudes[J]. Advances in Space Research, 1990, 10(3/4): 417-422
    [6] GRANHOLM G R. Near-real time atmospheric density model correction using space catalog data[R]. Cambridge: Massachusetts Institute of Technology, 2000
    [7] 吴连大. 人造卫星与空间碎片的轨道和探测[M]. 北京: 中国科学技术出版社, 2011

    WU Lianda. Orbiting and Detection of Artificial Satellites and Space Debris[M]. Beijing: Science and Technology of China Press, 2011
    [8] ZHANG Y, YU J J, CHEN J Y, et al. An empirical atmospheric density calibration model based on long short-term memory neural network[J]. Atmosphere, 2021, 12(7): 925 doi: 10.3390/atmos12070925
    [9] 李勰, 唐歌实, 李正, 等. 基于温度参数的经验密度模式修正方法[J]. 载人航天, 2015, 21(1): 48-52,90 doi: 10.3969/j.issn.1674-5825.2015.01.009

    LI Xie, TANG Geshi, LI Zheng, et al. A method for calibrating empirical density model based on temperature parameters[J]. Manned Spaceflight, 2015, 21(1): 48-52,90 doi: 10.3969/j.issn.1674-5825.2015.01.009
    [10] RUAN H B, LEI J H, DOU X K, et al. An exospheric temperature model based on CHAMP observations and TIEGCM simulations[J]. Space Weather, 2018, 16(2): 147-156 doi: 10.1002/2017SW001759
    [11] 刘卫, 龚建村, 刘四清, 等. HASDM修正方法分析与评估[J]. 空间科学学报, 2019, 39(5): 638-647 doi: 10.11728/cjss2019.05.638

    LIU Wei, GONG Jiancun, LIU Siqing, et al. Analysis and evaluation of high accuracy satellite drag model[J]. Chinese Journal of Space Science, 2019, 39(5): 638-647 doi: 10.11728/cjss2019.05.638
    [12] QIAN L Y, BURNS A, EMERY B A, et al. The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system[M]//HUBA J, SCHUNK R, KHAZANOV G. Modeling the Ionosphere–Thermosphere System. Washington: John Wiley & Sons, 2014: 73-84
    [13] BOUGHER S W, BLELLY P L, COMBI M, et al. Neutral upper atmosphere and ionosphere modeling[J]. Space Science Reviews, 2008, 139(1/2/3/4): 107-141
    [14] DICKINSON R E, RIDLEY E C, ROBLE R G. A three-dimensional general circulation model of the thermosphere[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A3): 1499-1512 doi: 10.1029/JA086iA03p01499
    [15] SUTTON E K. A new method of physics-based data assimilation for the quiet and disturbed thermosphere[J]. Space Weather, 2018, 16(6): 736-753 doi: 10.1002/2017SW001785
    [16] DOORNBOS E. Thermospheric Density and Wind Determination from Satellite Dynamics[M]. Heidelberg: Springer, 2012
    [17] EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321
    [18] BRUINSMA S, BONIFACE C. The operational and research DTM-2020 thermosphere models[J]. Journal of Space Weather and Space Climate, 2021, 11: 47 doi: 10.1051/swsc/2021032
    [19] EMMERT J T. Thermospheric mass density: a review[J]. Advances in Space Research, 2015, 56(5): 773-824 doi: 10.1016/j.asr.2015.05.038
    [20] CEFOLA P, VOLKOV I, SUEVALOV V. Description of the russian upper atmosphere density model GOST-2004[C]//37 th COSPAR Scientific Assembly. Montréal: COSPAR, 2008
    [21] VALLADO D A, MCCLAIN W D. Fundamentals of Astrodynamics and Applications[M]. Dordrecht: Kluwer Academic Publishers, 2001
    [22] 刘卫, 王荣兰, 刘四清, 等. 典型热层密度模式误差分析[J]. 空间科学学报, 2017, 37(5): 538-546 doi: 10.11728/cjss2017.05.538

    LIU Wei, WANG Ronglan, LIU Siqing, et al. Error analysis of typical atmospheric density model[J]. Chinese Journal of Space Science, 2017, 37(5): 538-546 doi: 10.11728/cjss2017.05.538
    [23] 刘卫. 热层大气模型动态修正建模与应用[D]. 北京: 中国科学院大学, 2022

    LIU Wei. Modeling and application of Dynamic Calibration Atmosphere[D]. Beijing: University of Chinese Academy of Sciences, 2022
    [24] 刘卫, 刘四清, 龚建村, 等. 基于高斯分布的密度误差对航天器轨道的影响分析[J]. 空间碎片研究, 2019, 19(2): 10-17

    LIU Wei, LIU Siqing, GONG Jiancun, et al. Analysis of effect of gauss distribution density error on spacecraft orbit[J]. Space Debris Research, 2019, 19(2): 10-17
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  318
  • PDF下载量:  57
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-03-19
  • 网络出版日期:  2023-04-23

目录

    /

    返回文章
    返回