留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯证据的全球地磁场模型主磁场阶数分析

马森 马嘉卉 佟继周 李云龙

马森, 马嘉卉, 佟继周, 李云龙. 基于贝叶斯证据的全球地磁场模型主磁场阶数分析[J]. 空间科学学报, 2023, 43(4): 600-608. doi: 10.11728/cjss2023.04.2022-0009
引用本文: 马森, 马嘉卉, 佟继周, 李云龙. 基于贝叶斯证据的全球地磁场模型主磁场阶数分析[J]. 空间科学学报, 2023, 43(4): 600-608. doi: 10.11728/cjss2023.04.2022-0009
MA Sen, MA Jiahui, TONG Jizhou, LI Yunlong. Analysis of Global Geomagnetic Main Field Model Order Based on Bayesian Evidence (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 600-608 doi: 10.11728/cjss2023.04.2022-0009
Citation: MA Sen, MA Jiahui, TONG Jizhou, LI Yunlong. Analysis of Global Geomagnetic Main Field Model Order Based on Bayesian Evidence (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 600-608 doi: 10.11728/cjss2023.04.2022-0009

基于贝叶斯证据的全球地磁场模型主磁场阶数分析

doi: 10.11728/cjss2023.04.2022-0009 cstr: 32142.14.cjss2023.04.2022-0009
详细信息
    作者简介:
  • 中图分类号: P353.1

Analysis of Global Geomagnetic Main Field Model Order Based on Bayesian Evidence

  • 摘要: 全球主磁场模型描述了主磁场的时空分布特征。模型的主磁场阶数是构建主磁场模型的关键问题之一。使用贝叶斯推理分析全球主磁场模型,依据贝叶斯证据比较模型阶数,为主磁场的阶数分析提供一种统计依据。利用Swarm卫星磁测数据,估计不同阶数的主磁场模型的证据。结果表明,在1~20的模型阶数中,阶数N = 12具有全局最佳证据。参照Jefrrey’s scale的阈值区间,数据对阶数N = 12的偏好显著优于其他阶数。实验表明,主磁场阶数的证据推理可用于研究主磁场贡献,结果与14阶球谐函数的功率谱分析相匹配。

     

  • 图  1  观测数据的空间与高度分布

    Figure  1.  Spatial and height distribution of observation data

    图  2  数据直方分布与密度曲线。(a)地磁标量强度$ {F} $,(b)观测噪声方差,(c)地壳场贡献模拟修正量,(d)外源场贡献模拟修正量

    Figure  2.  Data histogram distribution and density curve. (a) Geomagnetic scalar intensity $ {F} $, (b) observed noise variance, (c) simulation correction of crustal field, (d) simulation correction of external field

    图  3  地壳场与外源场的主磁场修正值的KDE等高图

    Figure  3.  KDE contour map of the main field correction value of the crustal field and the external field

    图  4  证据变化趋势

    Figure  4.  Trend of evidence

    图  5  阶数$ N=3 $ 的球谐系数的后验分布

    Figure  5.  Posterior distribution of spherical harmonic coefficients of order N=3

    图  6  利用14阶球谐函数计算的功率谱

    Figure  6.  Power spectrum calculated using spherical harmonics of order 14

    表  1  基于SHA方法的全球地磁场模型及其主磁场对应阶数

    Table  1.   Geomagnetic field model and its corresponding main field order based on SHA method

    模型名称磁场类型主磁场阶数发布时间
    IGRF-13[2]MM: 1~132020
    CGGM[3]MM: 1~152021
    COV-OBS.x2[4]MM: 1~142020
    CHAOS-7[5]M+L+EM: 1~202020
    EMM2017M+LM:1~122017
    POMME-10M+L+EM:1~152016
    CM5[6]M+LM:1~202015
    WMM2020M+LM:1~202015
     M代表主磁场,L代表地壳场,E代表外源场。
    下载: 导出CSV

    表  2  证据因子差异度量表

    Table  2.   Evidence factor difference scale

    $ {Z}_{i}/{Z}_{j} $$ \mathrm{lb}{(Z}_{i}/{Z}_{j}) $$ \mathrm{ln}({Z}_{i}/{Z}_{j}) $$ \mathrm{lg}({Z}_{i}/{Z}_{j}) $Evidence
    against $ {H}_{i} $
    $1\sim3.2$$0\sim1.7$$0\sim1.2$$0\sim0.5$Weak
    $3.2\sim10$$ 1.7 \sim 3.3 $$ 1.2 \sim 2.3 $$ 0.5 \sim 1 $Substantial
    $ 10 \sim 100 $$3.3\sim6.6$$2.3\sim4.6$$1\sim2$Srtong
    $ > 100 $$ > 6.6 $$ > 4.6 $$ > 2 $Decisive
    $ > 1000 $$ > 10 $$ > 7 $$ > 3 $Beyond reasonable doubt
    下载: 导出CSV

    表  3  1~20阶主磁场模型的证据

    Table  3.   Evidence of main field model of order 1~20

    $ N $$ \mathrm{lg}{Z}_{i} $$ N $$ \mathrm{lg}{Z}_{i} $
    $ 1 $$ -2236994722 $$ 11 $$ -20514 $
    $ 2 $$ -37342005 $$ 12 $$ -19973 $
    $ 3 $$ -37552523 $$ 13 $$ -20250 $
    $ 4 $$ -1053325 $$ 14 $$ -20411 $
    $ 5 $$ -96379 $$ 15 $$ -24028 $
    $ 6 $$ -35091 $$ 16 $$ -25807 $
    $ 7 $$ -22232 $$ 17 $$ -26269 $
    $ 8 $$ -20626 $$ 18 $$ -29179 $
    $ 9 $$ -20102 $$ 19 $$ -724596 $
    $ 10 $$ -20023 $$ 20 $$ -1372094 $
    下载: 导出CSV

    表  4  证据因子度量结果

    Table  4.   Result of the evidence factor measurement

    Order i$ \mathrm{lg}{(Z}_{12}/{Z}_{i}) $Evidence against $ {H}_{i} $
    10 725.2 Beyond reasonable doubt
    11 496.7 Beyond reasonable doubt
    13 277.2 Beyond reasonable doubt
    14 438.0 Beyond reasonable doubt
    下载: 导出CSV
  • [1] 徐文耀. 地球电磁现象物理学[M]. 合肥: 中国科学技术大学出版社, 2009: 87-157

    XU Wenyao. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei: University of Science and Technology of China Press, 2009: 87-157
    [2] ALKEN P, THÉBAULT E, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2021, 73(1): 1-25 doi: 10.1186/s40623-020-01288-x
    [3] YANG Y, HULOT G, VIGNERON P, et al. The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China seismo-electromagnetic satellite[J]. Earth, Planets and Space, 2021, 73(1): 1-21 doi: 10.1186/s40623-020-01323-x
    [4] HUDER L, GILLET N, FINLAY C C, et al. COV-OBS. x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[J]. Earth, Planets and Space, 2020, 72(1): 1-18 doi: 10.1186/s40623-019-1127-2
    [5] FINLAY C C, KLOSS C, OLSEN N, et al. The CHAOS-7 geomagnetic field model and observed changes in the south Atlantic anomaly[J]. Earth, Planets and Space, 2020, 72(1): 1-31 doi: 10.1186/S40623-020-01252-9
    [6] SABAKA T J, OLSEN N, TYLER R H, et al. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data[J]. Geophysical Journal International, 2015, 200(3): 1596-1626 doi: 10.1093/gji/ggu493
    [7] LI S Y, LI Y L, ZHANG T J, et al. Model-independent determination of cosmic curvature based on the Padé approximation[J]. The Astrophysical Journal, 2019, 887(1): 36 doi: 10.3847/1538-4357/ab5225
    [8] BURNHAM K P, ANDERSON D R. Multimodel inference: understanding AIC and BIC in model selection[J]. Sociological Methods & Research, 2004, 33(2): 261-304
    [9] BELTRÁN M, GARCIA-BELLIDO J, LESGOURGUES J, et al. Bayesian model selection and isocurvature perturbations[J]. Physical Review D, 2005, 71(6): 063532 doi: 10.1103/PhysRevD.71.063532
    [10] TROTTA R. Applications of Bayesian model selection to cosmological parameters[J]. Monthly Notices of the Royal Astronomical Society, 2007, 378(1): 72-82 doi: 10.1111/j.1365-2966.2007.11738.x
    [11] ARREGUI I, RAMOS A A, DÍAZ A J. Bayesian analysis of multiple harmonic oscillations in the solar corona[J]. The Astrophysical Journal Letters, 2013, 765(1): L23 doi: 10.1088/2041-8205/765/1/L23
    [12] BRIDGES M, LASENBY A N, HOBSON M P. A Bayesian analysis of the primordial power spectrum[J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(3): 1123-1130 doi: 10.1111/j.1365-2966.2006.10351.x
    [13] BALBI A, BRUNI M, QUERCELLINI C. ΛαDM: observational constraints on unified dark matter with constant speed of sound[J]. Physical Review D, 2007, 76(10): 103519 doi: 10.1103/PhysRevD.76.103519
    [14] NESSERIS S, GARCIA-BELLIDO J. Is the Jeffreys’ scale a reliable tool for Bayesian model comparison in cosmology[J]. Journal of Cosmology and Astroparticle Physics, 2013, 2013(8): 036 doi: 10.1088/1475-7516/2013/08/036
    [15] 胡传鹏, 孔祥祯, WAGENMAKERS E J, 等. 贝叶斯因子及其在JASP中的实现[J]. 心理科学进展, 2018, 26(6): 951-965 doi: 10.3724/SP.J.1042.2018.00951

    HU Chuanpeng, KONG Xiangzhen, WAGENMAKERS E J, et al. The Bayes factor and its implementation in JASP: a practical primer[J]. Advances in Psychological Science, 2018, 26(6): 951-965 doi: 10.3724/SP.J.1042.2018.00951
    [16] MACKAY D J C. A practical Bayesian framework for backpropagation networks[J]. Neural Computation, 1992, 4(3): 448-472 doi: 10.1162/neco.1992.4.3.448
    [17] MACKAY D J C. Information-based objective functions for active data selection[J]. Neural Computation, 1992, 4(4): 590-604 doi: 10.1162/neco.1992.4.4.590
    [18] 徐文耀, 区加明, 杜爱民. 地磁场全球建模和局域建模[J]. 地球物理学进展, 2011, 26(2): 398-415 doi: 10.3969/j.issn.1004-2903.2011.02.002

    XU Wenyao, OU Jiaming, DU Aimin. Geomagnetic field modelling for the globe and a limited region[J]. Progress in Geophysics, 2011, 26(2): 398-415 doi: 10.3969/j.issn.1004-2903.2011.02.002
    [19] SKILLING J. Nested sampling[J]. AIP Conference Proceedings, 2004, 735(1): 395-405
    [20] FEROZ F, HOBSON M P, BRIDGES M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics[J]. Monthly Notices of the Royal Astronomical Society, 2009, 398(4): 1601-1614 doi: 10.1111/j.1365-2966.2009.14548.x
    [21] BUCHNER J. Collaborative nested sampling: Big data versus complex physical models[J]. Publications of the Astronomical Society of the Pacific, 2019, 131(1004): 108005 doi: 10.1088/1538-3873/aae7fc
    [22] BUCHNER J. Nested sampling methods[OL]. arXiv preprint arXiv: 2101.09675, 2021
    [23] KASS R E, RAFTERY A E. Bayes factors[J]. Journal of the American Statistical Association, 1995, 90(430): 773-795 doi: 10.1080/01621459.1995.10476572
    [24] JEFFREYS H. The Theory of Probability[M]. 3 rd ed. Oxford: Oxford University Oxford, 1998
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  222
  • PDF下载量:  125
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-04-20
  • 录用日期:  2022-07-19
  • 修回日期:  2022-07-24
  • 网络出版日期:  2022-07-24

目录

    /

    返回文章
    返回