Development of an X-ray Modulation Characterization System for HXI Payload Onboard ASO-S Mission
-
摘要: 先进天基太阳天文台卫星(ASO-S)是中国首颗综合性太阳观测任务,太阳硬X射线成像仪(HXI)是ASO-S卫星三大载荷之一,主要负责太阳耀斑观测。HXI采用阵列空间调制间接成像方法,包含91个子准直器单元。发射前,在地面对HXI进行调制参数定标非常必要,但由于没有平行的X射线源而十分困难。本文根据HXI的基本原理与设计方案,提出了基于地面调制功能定标的设备与HXI调制定标的需求。根据所述需求,介绍了研制的X射线束流调制定标装置;利用该装置对HXI飞行件上所有子准直器完成地面调制功能定标。标定试验结果与预期相符,充分证明了准直器与X射线束流定标装置性能优良,该装置还可用于后续类似载荷的定标。Abstract: The Advanced Space-based Solar Observatory (ASO-S) was sent to space on 9 October 2022. As the first comprehensive satellite for solar concentrated observations of China, the ASO-S carries three payloads: the Hard X-ray Imager (HXI), the Full-disk solar vector MagnetoGraph (FMG) and the Lyman-alpha Solar Telescope (LST), respectively. The ASO-S dedicates to measuring the solar magnetic field, and observing CMEs and solar flares. As a key instrument onboard, HXI aims at imaging solar flares in hard X-rays from 30 to 200 keV with angular resolution up to 3.2", field of view of 40.3', energy resolution better than 24% at 32 keV and time cadence up to 0.125 s. Spatial modulation technique similar to YOHKOH/HXT of Japan is adopted as equipping 91 Fourier units, or tungsten grid pairs in the front and rear plates of collimator of HXI at 1190 mm distance. It is of great value to characterize modulating parameters by beam calibration before launch due to X-ray modulation relation of grid pairs are the basis of modulation imaging. For a long time, the lack of appropriate laboratory conditions has made it difficult to perform such kind of calibration test in the development of similar instrument abroad. However, we developed a practical and efficient set of X-ray Modulation Characterization System (XMCS) for the test of HXI. Firstly, the basic principle and design of HXI is introduced briefly. Secondly, ground calibration facility as well as modulation calibration requirements of HXI are presented. Detailed design and integration of XMCS were descripted subsequently. The modulation characterization test of the flight model of HXI has been successfully carried out to directly calibrate the modulation relation on the XMCS. Only part of the excellent calibration results are discussed here to verify the performance of XMCS, which shows great value and potential for the upcoming similar X-ray payloads calibration on ground.
-
Key words:
- HXI instrument /
- Collimator /
- Modulation /
- X-ray beam characterization /
- Facility
-
图 11 三次典型的束流测试结果对比。(a) 利用513所X射线系统对HXI鉴定件的测试结果;(b) 利用新采购的X光机对HXI鉴定件的重新测试结果;(c) 利用本调制功能定标装置对HXI飞行件的测试结果
Figure 11. Comparison of three typical beam tests. Panel (a) shows results of HXI EQM with X-ray system of No. 513 Institute; panel (b) shows re-test results of HXI EQM with a new X-ray generator; panel (c) shows results of HXI FM with our new facility
表 1 主要同类载荷性能对比
Table 1. Comparison on main characteristics of similar X-ray detectors
HXT/YOHKOH RHESSI STIX/Solar Orbiter HXI/ASO-S 发射时间 1991 2002 2020 2022.10 子准直器数量 64 9 32 91 光栅节距/μm Finest 105 34~2750 38~1000 36~1224 成像方式 SMC RMC SMC SMC 空间角分辨 7.7″ 2.3″ 7″ 3.2″ 探测器 NaI (Tl) Ge CdTe LaBr3 能量范围/keV 20~100 3~17000 4~150 30~200 时间分辨(最快)/s 0.5 2 0.1 0.125 表 2 地面定标设备对比
Table 2. Comparison of different ground calibration facilities
设备 放射源 同步辐射X射线源 X射线系统 能量 单能 可调 可调 流强 固定,无法调整 根据需要调整 根据需要可调 平行度 无法保证 通过长管道保证准直 通过长管道配合光阑准直 稳定性 稳定 稳定 稳定 应用方便性 随时可用 需要提前申请
应用时间受限定制,随时可用 表 3 HXI地面调制功能定标装置之X光机与束流管道需求
Table 3. Modulation characterization requirements of X-ray generator and beam tube for HXI
X光机 X束流管道 管电流 高压范围 流强稳定性/计数 光斑直径 光阑直径 激光瞄准精度 ≥10 mA ≥100 kV 5 h内优于5‰ ≤0.5 mm,越小越好 100 p≤D≤5 位置精度优于10 mm 表 4 HXI地面调制功能定标装置之精密指向调整平台需求
Table 4. Modulation characterization requirements of high-accuracy adjusting platform for HXI
位移测量精度 竖直行程 平移行程 角分辨率 最低台面高度 承重 平台稳定性 优于0.05 mm ≥500 mm ≥600 mm 优于0.05″ 不大于500 mm ≥1000 kg 位置变化≤0.2 mm/12 h 表 5 X射线光机主要性能指标
Table 5. Major characteristic of X-ray generator (MGI 225)
特性 高压范围/kV 高压调整步距/kV 管电流范围/mA 管电流调整步距/mA 焦斑直径/mm 靶材 功率/kW 参数 10~225 0.1 0~15 0.01 0.4/1.0可选 钨 2.25 注 稳定性测试结果为8 h内优于2‰。该数据为利用自研的溴化镧探测单元,在26 m距离处监测出射粒子计数所得。 表 6 精密指向调整平台主要技术指标测试结果
Table 6. Major results of the high-accuracy adjusting platform
指标 位移测量
精度/mm竖直行程/mm 平移行程/mm 角分辨率/(″ ) 最低台面
高度/mm承重/kg 稳定性 设计值 优于0.05 ≥500 ≥600 优于0.05 不大于500 ≥1000 位置变化≤0.2 mm/8 h 实测结果 优于0.02 ≥820 ≥720 优于0.05 最低可至460 ≥1500 优于0.1 mm/12 h -
[1] 王赤. 打造空间科学“梦之队”努力实现高水平科技自立自强[J]. 中国科学院院刊, 2021, 36(S2): 36-43WANG Chi. To realize high-level scientific and technological self-reliance by constructing “Dream Team” of space science[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(S2): 36-43 [2] GAN W Q, ZHU C, DENG Y Y, et al. Advanced space-based solar observatory (ASO-S): an overview[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 156 doi: 10.1088/1674-4527/19/11/156 [3] GAN W Q, FENG L, SU Y. A Chinese solar observatory in space[J]. Nature Astronomy, 2022, 6: 165 doi: 10.1038/s41550-021-01593-9 [4] GAN W Q. Status of the advanced space-based solar observatory[J]. Chinese Journal of Space Science, 2020, 40(5): 704-706 doi: 10.11728/cjss2020.05.704 [5] ZHANG Z, CHEN D Y, WU J, et al. Hard X-ray Imager (HXI) onboard the ASO-S mission[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 160 doi: 10.1088/1674-4527/19/11/160 [6] CHEN D Y, HU Y M, ZHANG Z, et al. Environmental tests of the HXI spectrometer for the ASO-S mission[J]. Journal of Instrumentation, 2020, 15(10): T10008 doi: 10.1088/1748-0221/15/10/T10008 [7] LIU W, ZHANG Z, WU J, et al. Pre-launch characterization of the spectrometer of Hard X-ray Imager (HXI) onboard the ASO-S mission[J]. Journal of Instrumentation, 2022, 17(5): P05045 doi: 10.1088/1748-0221/17/05/P05045 [8] LIN R P, DENNIS B R, HURFORD G J, et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)[J]. Solar Physics, 2002, 210(1/2): 3-32 doi: 10.1023/A:1022428818870 [9] KOSUGI T, MAKISHIMA K, MURAKAMI T, et al. The hard x-ray telescope (HXT) for the SOLAR-A mission[J]. Solar Physics, 1991, 136(1): 17-36 doi: 10.1007/BF00151693 [10] SAKAO T. Characteristics of Solar Flare Hard X-ray Sources as Revealed with the Hard X-ray Telescope Aboard the Yohkoh Satellite[D]. Tokyo: University of Tokyo, 1994 [11] BATTAGLIA A F, SAQRI J, MASSA P, et al. STIX X-ray microflare observations during the Solar Orbiter commissioning phase[J]. Astronomy & Astrophysics, 2021, 656: A4 [12] CHEN D Y, HU Y M, MA T, et al. Design and verification of the HXI collimator on the ASO-S mission[J]. Research in Astronomy and Astrophysics, 2021, 21(6): 136 doi: 10.1088/1674-4527/21/6/136 [13] 滕藤, 伍健, 常进. 太阳硬X射线成像望远镜模拟研究[J]. 天文学报, 2011, 52(4): 339-351TENG Teng, WU Jian, CHANG Jin. A simulation research on the solar hard X-ray imaging telescope[J]. Acta Astronomica Sinica, 2011, 52(4): 339-351 [14] 陈灯意. 星载太阳硬X射线成像仪的结构热稳定性研究[D]. 合肥: 中国科学技术大学, 2021CHEN Dengyi. A Study of Mechanical and Thermal Design for the Hard X-Ray Imager on ASO-S[D]. Hefei: University of Science and Technology of China, 2021 [15] JIANG X K, WU J, CHEN D Y, et al. Construction and validation of a geometry-based mathematical model for the hard X-ray imager[J]. Research in Astronomy and Astrophysics, 2023, 23(2): 025004 doi: 10.1088/1674-4527/acaa8f -
-