留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X射线掩星探测反演行星大气密度

余道淳 李海涛 李保权 刘亚宁

余道淳, 李海涛, 李保权, 刘亚宁. 基于X射线掩星探测反演行星大气密度[J]. 空间科学学报, 2023, 43(4): 661-669. doi: 10.11728/cjss2023.04.2022-0027
引用本文: 余道淳, 李海涛, 李保权, 刘亚宁. 基于X射线掩星探测反演行星大气密度[J]. 空间科学学报, 2023, 43(4): 661-669. doi: 10.11728/cjss2023.04.2022-0027
YU Daochun, LI Haitao, LI Baoquan, LIU Yaning. Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 661-669 doi: 10.11728/cjss2023.04.2022-0027
Citation: YU Daochun, LI Haitao, LI Baoquan, LIU Yaning. Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 661-669 doi: 10.11728/cjss2023.04.2022-0027

基于X射线掩星探测反演行星大气密度

doi: 10.11728/cjss2023.04.2022-0027 cstr: 32142.14.cjss2023.04.2022-0027
基金项目: 国家自然科学基金项目(41604152,U1938111)和中国科学院青年创新促进会项目(2018178)共同资助
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: P412.2

Methods of Planetary Atmospheric Density Retrieval Based on X-ray Occultation

  • 摘要: X射线掩星是一种常见的天文现象,基于X射线掩星探测的大气密度反演是一种涉及学科交叉的新方法,其通过处理高能X射线天体辐射源的掩星观测数据实现大气密度的反演,基本原理为X射线在大气中传播时,X射线光子被大气中的原子(包括分子中的原子)吸收和散射,从而导致X射线强度发生衰减,根据衰减后X射线信号的强度反演对应的密度廓线。本文根据X射线掩星探测的应用需求,论证了基于X射线掩星实现大气密度反演的新方法,重点介绍了光变曲线拟合和能谱拟合两种地球中高层大气密度反演算法,分析了X射线掩星探测反演大气密度的研究进展和研究方法,对基于X射线掩星反演大气密度的优点进行分析和讨论,进而对X射线掩星探测的应用场景进行展望。结果表明,作为一种新型中高层大气密度测量手段,X射线掩星探测可对中高层大气密度实现有效探测,弥补了目前中高层大气密度实测数据的不足。

     

  • 图  1  X射线掩星观测几何

    Figure  1.  Observation geometry of X-ray occultation

    图  2  基于Insight-HXMT观测数据得到的光线曲线

    Figure  2.  Light curves obtained by Insight-HXMT observations

    图  3  掩星期间不同高度范围能谱对比

    Figure  3.  Comparison of energy spectra at different altitude ranges during occultation

    图  4  火星大气密度反演结果与MCD数据库中两条密度廓线的对比

    Figure  4.  Comparison between Martian atmospheric density retrieved results and two density profiles in MCD database

  • [1] BOWYER S, BYRAM E T, CHUBB T A, et al. Lunar occultation of X-ray emission from the Crab Nebula[J]. Science, 1964, 146(3646): 912-917 doi: 10.1126/science.146.3646.912
    [2] FUKADA Y, HAYAKAWA S, KASAHARA I, et al. Lunar occultation of the hard X-ray source in the Crab Nebula[J]. Nature, 1975, 255(5508): 465-466 doi: 10.1038/255465a0
    [3] HOFFMAN J A, DAVISON P J N, MORRISON L V. Accurate position of GX5-1 from Lunar occultations[J]. Nature, 1973, 244(5415): 347-349 doi: 10.1038/244347a0
    [4] WOLFF R S, KESTENBAUM H L, KU W, et al. Measurement of the spiral structure of the X-ray source in the Crab nebula. I. Observation of the 1974 November 3 lunar occultation[J]. The Astrophysical Journal, 1975, 202(1): L15-L19
    [5] KESTENBAUM H L, KU W, NOVICK R, et al. Measurement of the spatial structure of the X-Ray source in the Crab Nebula. II. Observation of the 1974 December 28 Lunar occultation[J]. The Astrophysical Journal, 1975, 202(1): L21-L24
    [6] RIGGIO A, BURDERI L, DI SALVO T, et al. Subarcsecond location of IGR J17480-2446 with Rossi XTE[J]. The Astrophysical Journal Letters, 2012, 754(1): L11 doi: 10.1088/2041-8205/754/1/L11
    [7] BORN E. On the analysis of lunar occultations of point-like X-ray sources[J]. Astrophysics and Space Science, 1979, 63(2): 439-455 doi: 10.1007/BF00638913
    [8] ZHANG S N, FISHMAN G J, HARMON B A, et al. Imaging high-energy astrophysical sources using Earth occultation[J]. Nature, 1993, 366(6452): 245-247 doi: 10.1038/366245a0
    [9] ZHANG S N, HARMON B A, PACIESAS W S, et al. Deep search for celestial hard X-ray emission by earth occultation with BATSE/CGRO[J]. Astronomy & Astrophysics Supplement Series, 1996, 120(4): 137-140
    [10] HARMON B A, WILSON C A, FISHMAN G J, et al. The Burst and Transient Source Experiment (BATSE) Earth occultation catalog of low-Energy Gamma-Ray sources[J]. The Astrophysical Journal Supplement Series, 2004, 154(2): 585-622 doi: 10.1086/421940
    [11] WILSON-HODGE C A, CASE G L, CHERRY M L, et al. Three years of Fermi GBM Earth occultation monitoring: observations of hard X-ray/soft gamma-ray sources[J]. The Astrophysical Journal Supplement Series, 2012, 201(2): 33 doi: 10.1088/0067-0049/201/2/33
    [12] SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-Ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63 doi: 10.2514/1.13331
    [13] WOOD K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]//Proceedings of SPIE 1940, Small Satellite Technology and Applications III. Orlando, FL, United States: SPIE, 1993: 105-116
    [14] RISALITI G, ELVIS M, FABBIANO G, et al. Occultation measurement of the size of the X-Ray-emitting region in the Active Galactic Nucleus of NGC 1365[J]. The Astrophysical Journal, 2007, 659(2): L111-L114 doi: 10.1086/517884
    [15] TORRICELLI-CIAMPONI G, PIETRINI P, RISALITI P, et al. Search for X-ray occultations in active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2014, 442(3): 2116-2130 doi: 10.1093/mnras/stu969
    [16] ROQUES F, MONCUQUET M. A detection method for small Kuiper belt objects: the search for stellar occultations[J]. Icarus, 2000, 147(2): 530-544 doi: 10.1006/icar.2000.6452
    [17] ROQUES F, MONCUQUET M, LAVILLONIÈRE N, et al. A search for small Kuiper Belt Objects by stellar occultations[J]. The Astrophysical Journal, 2003, 594(1): L63-L66 doi: 10.1086/378576
    [18] SCHLICHTING H E, OFEK E O, WENZ M, et al. A single sub-kilometre Kuiper belt object from a stellar occultation in archival data[J]. Nature, 2009, 462(7275): 895-897 doi: 10.1038/nature08608
    [19] CHANG H K, LIU C Y, CHEN K T. Millisecond dips in the 2007-09 RXTE/PCA light curve of Sco X-1 and one possible occultation event[J]. Monthly Notices of the Royal Astronomical Society, 2011, 411(1): 427-434
    [20] CHANG H K, LIU C Y, CHEN K T. Search for serendipitous trans-Neptunian object occultation in X-rays[J]. Monthly Notices of the Royal Astronomical Society, 2013, 429(2): 1626-1632
    [21] MORI K, TSUNEMI H, KATAYAMA H, et al. An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula[J]. The Astrophysical Journal, 2004, 607(2): 1065-1069 doi: 10.1086/383521
    [22] POPPENHAEGER K, SCHMITT J H M M, WOLK S J. Transit observations of the Hot Jupiter HD 189733 b at X-ray wavelengths[J]. The Astrophysical Journal, 2013, 773(1): 62 doi: 10.1088/0004-637X/773/1/62
    [23] YU D C, LI H T, LI B Q, et al. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT[J]. Advances in Space Research, 2022, 69(9): 3426-3434 doi: 10.1016/j.asr.2022.02.030
    [24] YU D C, LI H T, LI B Q, et al. Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT[J]. Atmospheric Measurement Techniques, 2022, 15(10): 3141-3159 doi: 10.5194/amt-15-3141-2022
    [25] 胡雄, 曾桢, 张训械, 等. 大气GPS掩星观测反演方法[J]. 地球物理学报, 2005, 48(4): 768-774 doi: 10.3321/j.issn:0001-5733.2005.04.006

    HU Xiong, ZENG Zhen, ZHANG Xunxie, et al. Atmospheric inversion methods of GPS radio occultation[J]. Chinese Journal of Geophysics, 2005, 48(4): 768-774 doi: 10.3321/j.issn:0001-5733.2005.04.006
    [26] DETERMAN J R, BUDZIEN S A, KOWALSKI M P, et al. Measuring atmospheric density with X-ray occultation sounding[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): A06323
    [27] TUO Y L, LI X B, GE M Y, et al. In-orbit timing calibration of the Insight-Hard X-Ray modulation telescope[J]. The Astrophysical Journal Supplement Series, 2022, 259(1): 14 doi: 10.3847/1538-4365/ac4250
    [28] ZHU Y X, LU J B, LI X B, et al. Calibration of the energy response matrix for X-ray detector CCD236[J]. Journal of Instrumentation, 2021, 16(5): P05016 doi: 10.1088/1748-0221/16/05/P05016
    [29] NANG Y, LIAO J Y, SAI N, et al. In-orbit calibration to the point-spread function of Insight-HXMT[J]. Journal of High Energy Astrophysics, 2020, 25: 39-47 doi: 10.1016/j.jheap.2020.01.002
    [30] LI X B, LI X F, TAN Y, et al. In-flight calibration of the Insight-Hard X-ray modulation telescope[J]. Journal of High Energy Astrophysics, 2020, 27: 64-76 doi: 10.1016/j.jheap.2020.02.009
    [31] LU X F, LIU C Z, LI X B, et al. Design and calibration of the high energy particle monitor onboard the Insight-HXMT[J]. Journal of High Energy Astrophysics, 2020, 26: 77-82 doi: 10.1016/j.jheap.2020.02.006
    [32] BUDIL D E, LEE S, SAXENA S, et al. Nonlinear-Least-Squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg–Marquardt Algorithm[J]. Journal of Magnetic Resonance, Series A, 1996, 120(2): 155-189 doi: 10.1006/jmra.1996.0113
    [33] SHEN J J, BERK D E V, SCHNEIDER D P, et al. The black hole-bulge relationship in luminous broad-line active galactic nuclei and host galaxies[J]. The Astronomical Journal, 2008, 135(3): 928-946 doi: 10.1088/0004-6256/135/3/928
    [34] SAKRISON D. Efficient recursive estimation of the parameters of a radar or radio astronomy target[J]. IEEE Transactions on Information Theory, 1966, 12(1): 35-41 doi: 10.1109/TIT.1966.1053855
    [35] BOCK R D, AITKIN M. Marginal maximum likelihood estimation of item parameters: application of an EM algorithm[J]. Psychometrika, 1981, 46(4): 443-459 doi: 10.1007/BF02293801
    [36] BUCHNER J, GEORGAKAKIS A, NANDRA K, et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: bayesian model selection and catalogue[J]. Astronomy & Astrophysics, 2014, 564: A125
    [37] SANDERS N E, SODERBERG A M, GEZARI S, et al. Toward characterization of the type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1[J]. The Astrophysical Journal, 2015, 799(2): 208 doi: 10.1088/0004-637X/799/2/208
    [38] CHIB S, GREENBERG E. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335
    [39] KITZMANN D, HENG K, ORESHENKO M, et al. Helios-r2: a new Bayesian, open-source retrieval model for brown dwarfs and exoplanet atmospheres[J]. The Astrophysical Journal, 2020, 890(2): 174 doi: 10.3847/1538-4357/ab6d71
    [40] CASH W. Parameter estimation in astronomy through application of the likelihood ratio[J]. The Astrophysical Journal, 1979, 228: 939-947 doi: 10.1086/156922
    [41] NOUSEK J A, SHUE D R. χ2 and C statistic minimization for low count per bin data[J]. The Astrophysical Journal, 1989, 342: 1207 doi: 10.1086/167676
    [42] MIGHELL K J. Parameter estimation in astronomy with poisson-distributed data. I. The $ {\chi }_{\gamma }^{2} $ statistic[J]. The Astrophysical Journal, 1999, 19(1): 380-393
    [43] LASS J, BØGGILD M E, HEDEGÅRD P, et al. Multinomial, Poisson and Gaussian statistics in count data analysis[J]. Journal of Neutron Research, 2021, 23(1): 69-92 doi: 10.3233/JNR-190145
    [44] KATSUDA S, FUJIWARA H, ISHISAKI Y, et al. New measurement of the vertical atmospheric density profile from occultations of the Crab Nebula with X-ray astronomy satellites Suzaku and Hitomi[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028886
    [45] ROBLE R G, HAYS P B. A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data[J]. Planetary and Space Science, 1972, 20(10): 1727-1744 doi: 10.1016/0032-0633(72)90194-8
    [46] RAHMATI A, LARSON D E, CRAVENS T E, et al. MAVEN SEP observations of Scorpius X-1 X-rays at Mars: a midatmosphere occultation analysis technique[J]. Geophysical Research Letters, 2020, 47(21): e2020 GL088927
    [47] LEWIS S R, COLLINS M, READ P L, et al. A climate database for Mars[J]. Journal of Geophysical Research: Planets, 1999, 104(E10): 24177-24194
    [48] HINSON D P, SIMPSON R A, TWICKEN J D, et al. Initial results from radio occultation measurements with Mars Global Surveyor[J]. Journal of Geophysical Research:Planets, 1999, 104(E11): 26997-27012 doi: 10.1029/1999JE001069
    [49] TELLMANN S, PÄTZOLD M, HÄUSLER B, et al. The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements[J]. Journal of Geophysical Research:Planets, 2013, 118(2): 306-320 doi: 10.1002/jgre.20058
    [50] HINSON D P, ASMAR S W, KAHAN D S, et al. Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder[J]. Icarus, 2014, 243: 91-103 doi: 10.1016/j.icarus.2014.09.019
    [51] FORGET F, MONTMESSIN F, BERTAUX J L, et al. Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM[J]. Journal of Geophysical Research, 2009, 114(E1): E01004
    [52] FEDOROVA A A, KORABLEV O I, BERTAUX J L, et al. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol[J]. Icarus, 2009, 200(1): 96-117 doi: 10.1016/j.icarus.2008.11.006
    [53] SANDEL B R, GRÖLLER H, YELLE R V, et al. Altitude profiles of O2 on Mars from SPICAM stellar occultations[J]. Icarus, 2015, 252: 154-160 doi: 10.1016/j.icarus.2015.01.004
    [54] OBERHEIDE J, FORBES J M, ZHANG X, et al. Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A11306
  • 加载中
图(4)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  186
  • PDF下载量:  72
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-06-09
  • 录用日期:  2023-06-25
  • 修回日期:  2022-12-28
  • 网络出版日期:  2023-02-13

目录

    /

    返回文章
    返回