留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon

FENG Shuai WANG Ronglan

FENG Shuai, WANG Ronglan. Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon. Chinese Journal of Space Science, 2023, 43(4): 724-735 doi: 10.11728/cjss2023.04.2022-0065
Citation: FENG Shuai, WANG Ronglan. Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon. Chinese Journal of Space Science, 2023, 43(4): 724-735 doi: 10.11728/cjss2023.04.2022-0065

Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon

doi: 10.11728/cjss2023.04.2022-0065 cstr: 32142.14.cjss2023.04.2022-0065
Funds: Supported by the National Natural Science Foundation of China (42074224), Key Research Program of the Chinese Academy of Sciences (ZDRE-KT-2021-3) and Pandeng Program of National Space Science Center, Chinese Academy of Sciences
More Information
  • Figure  1.  Schematic of the BDS-3’s satellite constellation

    Figure  2.  Averaged impact flux of the high-density meteoroid population in 9 directions for all the 11 satellites

    Figure  3.  Averaged impact velocity of the high-density meteoroid population in 9 directions for all the 11 satellites

    Figure  4.  Averaged impact flux of the low-density meteoroid population in 9 directions for all the 11 satellites

    Figure  5.  Averaged impact velocity of the low-density meteoroid population in 9 directions for all the 11 satellites

    Figure  6.  Averaged flux and velocity on the surface facing Earth/Moon

    Figure  7.  Averaged total flux for all 11 satellites encountering the high-density and low-density meteoroid populations (the red histogram is the average total flux of the high-density population, and the green histogram is the average total flux of the low-density population). The blue dashed line with the pentagram is the ratio of the total flux of the high-density population over the low-density population

    Figure  8.  Critical meteoroid particle mass in 9 directions of 11 satellites encountering the high-density meteoroid populations

    Figure  9.  Critical meteoroid particle mass in 9 directions of 11 satellites encountering the low-density meteoroid populations

    Figure  10.  mc of the high-density meteoroid population in the directions facing the Earth/Moon, Sun and anti-Sun, and the mc of the low-density meteoroid population on the surfaces facing the Earth/Moon

    Figure  11.  Dependence of flux on the meteoroid mass for each satellite orbiting the Earth

    Figure  12.  Dependence of flux on the impact velocity for each satellite orbiting the Earth

    Figure  13.  Critical diameter dc as a function of the meteoroid mass and impact velocity, where each line represents the critical diameter for a certain mass and velocity

    Figure  14.  Critical mass mc as a function of the meteoroid mass and impact velocity, where each line represents the critical mass for a certain mass and velocity

    Figure  15.  Catastrophic collision flux FEMR1 and FEMR2 for 8 satellites orbiting the Earth. The solid green dot indicates the penetrating flux Fpen and the magenta square is the ratio of Fpen over the total flux FD-S by the D-S model

    Figure  16.  Total flux FJ-M derived from the J-M model for the 8 satellites (green histogram). The ratio of FJ-M over the total flux FD-S from the D-S model is demonstrated by the blue asterisk

    Figure  17.  Space debris flux of the 8 satellites orbiting the Earth in terms of the debris size, where each line represents the flux for a certain satellite and size

    Figure  18.  Fluxes of space debris with a size greater than 10 μm encountering the 8 satellites shown as the function of the impact velocity, where each line represents the flux for a certain satellite and velocity

    Figure  19.  Model simulated total fluxes and impact probabilities for all satellites

    Table  1.   Characteristic parameters of the 8 satellites in the Earth orbit space

    SatelliteMass/kgAverage altitude/km
    CSS900 000393
    M20106021528
    M22106021528
    M24106021528
    G3540035786
    I1540035786
    I2540035786
    I3540035786
    下载: 导出CSV

    Table  2.   Characteristic parameters and initial Kepler orbital elements of the 3 satellites orbiting the Moon, where m is the mass, h is the average altitude, a is the semi-major axis, e is the eccentricity, i is the orbital inclination, Ω is the right ascension of ascending node,ω is the argument of perilune, and M is the mean anomaly

    Satellitem /kgh /kma /kmei /(°)Ω /(°)ω/ (°)M /(°)
    MO12350194.651932.850901040296
    MO224801001837.830901040296
    MO3248010019440.013110474296
    下载: 导出CSV

    Table  3.   Material properties for aluminum Al-6061-T6

    ρ /(kg·m–3)Brinell hardnessσ /MPa
    271395276
    下载: 导出CSV
  • [1] REN S Y, YANG X H, WANG R L, et al. The interaction between the LEO satellite constellation and the space debris environment[J]. Applied Sciences, 2021, 11(20): 9490 doi: 10.3390/app11209490
    [2] ADAMIŠINOVÁ A. European Space Traffic Management System: Micrometeoroids and Space Debris as a Possible Threat for Future Missions[R]. Brno: Mendel University, 2022
    [3] BOLEY A C, BYERS M. Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth[J]. Scientific Reports, 2021, 11(1): 10642 doi: 10.1038/s41598-021-89909-7
    [4] DUZELLIER S, GORDO P, MELICIO R, et al. Space debris generation in GEO: Space materials testing and evaluation[J]. Acta Astronautica, 2022, 192: 258-275 doi: 10.1016/j.actaastro.2021.12.036
    [5] OIKONOMIDOU X, BRAUN V, LEMMENS S. Guidelines for space debris and meteoroid impact risk assessment with DRAMA/MIDAS[C]//8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
    [6] COOKE W, MATNEY M, MOORHEAD A V, et al. A comparison of damaging meteoroid and orbital debris fluxes in earth orbit[C]//7 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2017
    [7] MOORHEAD A V, MATNEY M. The ratio of hazardous meteoroids to orbital debris in near-earth space[J]. Advances in Space Research, 2021, 67(1): 384-392 doi: 10.1016/j.asr.2020.09.015
    [8] KRAG H, SERRANO M, BRAUN V, et al. A 1 cm space debris impact onto the Sentinel-1 A solar array[J]. Acta Astronautica, 2017, 137: 434-443 doi: 10.1016/j.actaastro.2017.05.010
    [9] HOFFMAN K D, HYDE J L, CHRISTIANSEN E L, et al. Extravehicular activity micrometeoroid and orbital debris risk assessment methodology[C]//Proceedings of the 2019 Hypervelocity Impact Symposium. Destin, FL, USA: American Society of Mechanical Engineers, 2019
    [10] HOFFMAN K, HYDE J L, CHRISTIANSEN E L, et al. Comparison of risk from orbital debris and meteoroid environment models on the Extravehicular Mobility Unit (EMU)[C]//Proceedings of the 1 st International Orbital Debris Conference (IOC). Houston, Texas, United States, 2019
    [11] EVANS H J, HYDE J L, CHRISTANSEN E L, et al. Consequences of micrometeoroid/orbital debris penetrations on the international space station[C]//Proceedings of the 2019 Hypervelocity Impact Symposium. Destin, FL, USA: American Society of Mechanical Engineers, 2019
    [12] HYDE J L, CHRISTIANSEN E L, LEAR D M, et al. Surveys of returned ISS hardware for MMMOD impacts[C]//Proceedings of the 7 th European Conference on Space Debris. Darmstadt, Germany: ESA, 2017
    [13] OLIVIERI L, FRANCESCONI A. Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65(1): 351-363 doi: 10.1016/j.asr.2019.09.048
    [14] PANOV D V, SILNIKOV M V, MIKHAYLIN A I, et al. Large-scale shielding structures in low earth orbits[J]. Acta Astronautica, 2015, 109: 153-161 doi: 10.1016/j.actaastro.2014.12.009
    [15] Moorhead A V. NASA Meteoroid Engineering Model (MEM) Version 3[R]. 2020.
    [16] EHLERT S. Modeling meteoroid densities for spacecraft risk assessment[J]. Journal of Space Safety Engineering, 2020, 7(3): 249-254 doi: 10.1016/j.jsse.2020.06.001
    [17] BRAUN V, HORSTMANN A, LEMMENS S, et al. Recent developments in space debris environment modelling, verification and validation with MASTER[C]//Proceedings of the 8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
    [18] BRAUN V. Impact of debris model updates on risk assessments[C]//Proceedings of the 1 st NEO and Space Debris Detection Conference. Darmstadt, Germany: ESA Space Debris Office, 2019
    [19] Flegel S, Gelhaus J, Möckel M, et al. Maintenance of the ESA MASTER Model[J]. Final Report, 2011, 21705(08)
    [20] JENNISKENS P. Meteor stream activity I. The annual streams[J]. Astronomy and Astrophysics, 1994, 287: 990-1013
    [21] Vavrin, Andrew B. , et al. NASA Orbital Debris Engineering Model ORDEM 3.1-Software User Guide. No. JSC-E-DAA-TN75767. 2019
    [22] MANIS A, MATNEY M, ANZ-MEADOR P, et al. The Updated GEO Population for ORDEM 3.1[C]//Proceedings of the 1 st International Orbital Debris Conference. Houston, Texas, United States, 2019
    [23] RODMANN J, MILLER A, TRAUD M, et al. Micrometeoroid impact risk assessment for interplanetary missions//8 th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office, 2021
    [24] RYAN S, CHRISTIANSEN E L. A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris[J]. Acta Astronautica, 2011, 69(5/6): 245-257
    [25] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1/4): 145-156
    [26] MOORHEAD A V, KINGERY A, EHLERT S. NASA’s meteoroid engineering model 3 and its ability to replicate spacecraft impact rates[J]. Journal of Spacecraft and Rockets, 2020, 57(1): 160-176 doi: 10.2514/1.A34561
    [27] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]. Acta Astronautica, 2019, 163: 54-61 doi: 10.1016/j.actaastro.2019.04.046
    [28] LE MAY S, GEHLY S, CARTER B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 2018, 151: 445-455 doi: 10.1016/j.actaastro.2018.06.036
    [29] TORKY M, HASSANEIN A E, EL FIKY A H, et al. Analyzing space debris flux and predicting satellites collision probability in LEO orbits based on petri nets[J]. IEEE Access, 2019, 7: 83461-83473 doi: 10.1109/ACCESS.2019.2922835
    [30] Christiansen, Eric L. Meteoroid/debris shielding. No. S-898. Houston: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 2003
    [31] HU D Q, CHI R Q, LIU Y Y, et al. Sensitivity analysis of spacecraft in micrometeoroids and orbital debris environment based on panel method[J]. Defence Technology, 2023, 19: 126-142 doi: 10.1016/j.dt.2021.11.001
    [32] MOORHEAD A V. Meteoroid environment modeling: The meteoroid engineering model and shower forecasting[C]//Proceedings of the Applied Space Environments Conference (ASEC) 2017: Measurements, Models, Testing & Tools. Huntsville, AL USA, 2017
    [33] MURTAZOV A K. Assessing the meteoroid risk in near earth space[J]. Open Astronomy, 2018, 27(1): 144-149 doi: 10.1515/astro-2018-0025
    [34] DROLSHAGEN G. Impact effects from small size meteoroids and space debris[J]. Advances in Space Research, 2008, 41(7): 1123-1131 doi: 10.1016/j.asr.2007.09.007
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  133
  • PDF下载量:  48
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-06-25
  • 修回日期:  2023-06-25
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回