留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测综述与拟解决的科学问题

吴岳良 胡文瑞 王建宇 常进 蔡荣根 张永合 罗子人 陆由俊 周宇峰 郭宗宽

吴岳良, 胡文瑞, 王建宇, 常进, 蔡荣根, 张永合, 罗子人, 陆由俊, 周宇峰, 郭宗宽. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599. doi: 10.11728/cjss2023.04.yg08
引用本文: 吴岳良, 胡文瑞, 王建宇, 常进, 蔡荣根, 张永合, 罗子人, 陆由俊, 周宇峰, 郭宗宽. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599. doi: 10.11728/cjss2023.04.yg08
WU Yuliang, HU Wenrui, WANG Jianyu, CHANG Jin, CAI Ronggen, ZHANG Yonghe, LUO Ziren, LU Youjun, ZHOU Yufeng, GUO Zongkuan. Review and Scientific Objectives of Spaceborne Gravitational Wave Detection Missions (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
Citation: WU Yuliang, HU Wenrui, WANG Jianyu, CHANG Jin, CAI Ronggen, ZHANG Yonghe, LUO Ziren, LU Youjun, ZHOU Yufeng, GUO Zongkuan. Review and Scientific Objectives of Spaceborne Gravitational Wave Detection Missions (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08

空间引力波探测综述与拟解决的科学问题

doi: 10.11728/cjss2023.04.yg08 cstr: 32142.14.cjss2023.04.yg08
基金项目: 国家重点研发计划项目(2020YFC2201501),国家自然科学基金项目(12147103, 11821505)和中国科学院空间科学战略性先导科技专项项目(XDB23030100)共同资助
详细信息
    作者简介:
  • 中图分类号: P352

Review and Scientific Objectives of Spaceborne Gravitational Wave Detection Missions

  • 摘要: 空间引力波探测将为人类探索宇宙打开中低频段(0.1 mHz~1 Hz)引力波观测的新窗口,这个频段的引力波事件被认为具有更重要的天文学、宇宙学以及物理学意义。其典型的波源包括超大和中等质量黑洞双星的并合、极端和中等质量比黑洞双星的绕转、银河系内数以百万计的致密双星系统以及随机引力波背景等,为研究宇宙起源与演化、黑洞形成与结构、引力和时空本质、暗能量和暗物质属性等提供了全新的方法和手段。21世纪以来,欧美联合的LISA计划成功发射了技术验证卫星LISA探路者,目前LISA计划已进入工程实施阶段,中国太极计划和天琴计划也相继发射了技术实验卫星太极一号和天琴一号,标志着空间引力波探测进入了全新的发展阶段。本文主要概述近年来国内外发展态势,详细凝炼空间引力波探测与研究的科学目标和未来发展的重点领域,系统优化引力波天文学、引力波物理学以及引力波宇宙学等相关学科布局,重点阐述推进空间引力波探测与研究的重要意义和发展战略。

     

  • 图  1  国外空间引力波探测计划

    Figure  1.  Foreign space-borne gravitational wave detection program

    图  2  太极计划三星编队概念

    Figure  2.  The conceptual diagram of Taiji mission’s satellite constellation

  • [1] LISA scientific collaboration. LISA L3 mission proposal [EB/OL]. (2017-02-23) https://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdf
    [2] LISA scientific collaboration. LISA Pre-Phase A Report [EB/OL]. (1998-07-08) https://lisa.nasa.gov/archive2011/Documentation/ppa2.08.pdf
    [3] LISA scientific collaboration. NGO, Revealing a hidden Universe: opening a new chapter of discovery-Assessment Study Report [EB/OL] . (2011-12-09) https://sci.esa.int/documents/34985/36280/1567258287202-NGO_YB.pdf
    [4] LISA scientific collaboration. L1 Mission Reformulation, NGO - New Gravitational Wave Observer - Technical programmatic review report [EB/OL] . (2012-02-28) https://sci.esa.int/documents/34985/36280/1567258945033-NGO_technical_and_programmatic_review_report.pdf
    [5] CESARSKY C and the Senior Survey Committee. Report of the Senior Survey Committee on the selection of the science themes for the L2 and L3 launch opportunities in the cosmic vision programme [EB/OL] . (2013-10-10) https://sci.esa.int/documents/34375/36249/1567259858030-ESA_Senior_Survey_Committee_report_L2 andL3_themes.pdf
    [6] ARMANO M, AUDLEY H, AUGER G, et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101 doi: 10.1103/PhysRevLett.116.231101
    [7] ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: New LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101 doi: 10.1103/PhysRevLett.120.061101
    [8] WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202 doi: 10.1038/s41567-019-0462-3
    [9] ARMANO M, AUDLEY H, BAIRD J, et al. LISA pathfinder performance confirmed in an open-loop configuration: Results from the free-fall actuation mode[J]. Physical Review Letters, 2019, 123(11): 111101 doi: 10.1103/PhysRevLett.123.111101
    [10] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA Pathfinder: In-flight performance of the optical test mass readout[J]. Physical Review Letters, 2021, 126(13): 131103 doi: 10.1103/PhysRevLett.126.131103
    [11] ESA. LISA mission moves to final design phase [EB/OL] . (2022-05-04) https://www.esa.int/Science_Exploration/Space_Science/LISA_mission_moves_to_final_design_phase
    [12] BENDER P L. Additional astrophysical objectives for LISA follow-on missions[J]. Classical and Quantum Gravity, 2004, 21(5): S1203-S1208 doi: 10.1088/0264-9381/21/5/120
    [13] BENDER P L, BEGELMAN M C, GAIR J R. Possible LISA follow-on mission scientific objectives[J]. Classical and Quantum Gravity, 2013, 30(16): 165017 doi: 10.1088/0264-9381/30/16/165017
    [14] Phinney S, Bender P, Buchman R, et al. The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present[R]. NASA Lewis Research Center: NASA Mission Concept Study, 2004
    [15] HARRY G M, FRITSCHEL P, SHADDOCK D A, et al. Laser interferometry for the Big Bang Observer[J]. Classical and Quantum Gravity, 2006, 23(15): 4887-4894 doi: 10.1088/0264-9381/23/15/008
    [16] CUTLER C, HARMS J. Big Bang Observer and the neutron-star-binary subtraction problem[J]. Physical Review D, 2006, 73(4): 042001 doi: 10.1103/PhysRevD.73.042001
    [17] CORBIN V, CORNISH N J. Detecting the cosmic gravitational wave background with the Big Bang Observer[J]. Classical and Quantum Gravity, 2006, 23(7): 2435-2446 doi: 10.1088/0264-9381/23/7/014
    [18] SETO N, KAWAMURA S, NAKAMURA T. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space[J]. Physical Review Letters, 2001, 87(22): 221103 doi: 10.1103/PhysRevLett.87.221103
    [19] KAWAMURA S, NAKAMURA T, ANDO M, et al. The Japanese space gravitational wave antenna – DECIGO[J]. Classical and Quantum Gravity, 2006, 23(8): S125-S131 doi: 10.1088/0264-9381/23/8/S17
    [20] KAWAMURA S, ANDO M, SETO N, et al. The Japanese space gravitational wave antenna: DECIGO[J]. Classical and Quantum Gravity, 2011, 28(9): 094011 doi: 10.1088/0264-9381/28/9/094011
    [21] SATO S, KAWAMURA S, ANDO M, et al. The status of DECIGO[J]. Journal of Physics: Conference Series, 2017, 840(1): 012010
    [22] KAWAMURA S, NAKAMURA T, ANDO M, et al. Space gravitational-wave antennas DECIGO and B-DECIGO[J]. International Journal of Modern Physics D, 2019, 28(12): 1845001 doi: 10.1142/S0218271818450013
    [23] KAWAMURA S, ANDO M, SETO N, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[J]. Progress of Theoretical and Experimental Physics, 2021, 5: 05A105
    [24] NASA. Gravitational-wave mission concept study final report[EB/OL] . (2012-08-09) https://pcos.gsfc.nasa.gov/physpag/GW_Study_Rev3_Aug2012-Final.pdf
    [25] TINTO M, DE ARAUJO J C N, AGUIAR O D, et al. A geostationary gravitational wave interferometer (GEOGRAWI)[OL]. arXiv preprint arXiv: 1111.2576, 2011
    [26] MCWILLIAMS S T. Geostationary antenna for disturbance-free laser interferometry (GADFLI)[OL]. arXiv preprint arXiv: 1111.3708, 2011
    [27] HISCOCK B, HELLINGS R W. OMEGA: a space gravitational wave MIDEX mission[J]. Bulletin of the Astronomical Society, 1997, 29(5): 1312
    [28] HELLINGS R, LARSON S L, JENSEN S, et al. A low-cost, high-performance space gravitational astronomy mission[EB/OL]. (2011-01-20) https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0007-Hellings.pdf
    [29] CONKLIN J W, BUCHMAN S, AGUERO V, et al. LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points[OL]. arXiv preprint arXiv: 1111.5264, 2011
    [30] NI W T, SHY J T, TSENG S M, et al. Progress in mission concept study and laboratory development for the astrodynamical space test of relativity using optical devices (ASTROD)[C]//Proceedings Volume 3116, Small Spacecraft, Space Environments, and Instrumentation Technologies. San Diego: SPIE, 1997: 105-116
    [31] RÜEDIGER A. Detecting gravitational waves with ground and space interferometers - with special attention to the space project ASTROD[J]. International Journal of Modern Physics D, 2002, 11(7): 963-994 doi: 10.1142/S0218271802002505
    [32] NI W T. ASTROD - An overview[J]. International Journal of Modern Physics D, 2002, 11(7): 947-962 doi: 10.1142/S0218271802002499
    [33] NI W T, BAO G, BAO Y, et al. ASTROD I, test of relativity, solar-system measurement and G-wave detection[J]. Journal of the Korean Physical Society, 2004, 45: S118-S123
    [34] NI W T, SHIOMI S, LIAO A C. ASTROD, ASTROD I and their gravitational-wave sensitivities[J]. Classical and Quantum Gravity, 2004, 21(5): S641-S646 doi: 10.1088/0264-9381/21/5/037
    [35] NI W T, BAO Y, DITTUS H, et al. ASTROD I: Mission concept and Venus flybys[J]. Acta Astronautica, 2006, 59(8/9/10/11): 598-607
    [36] NI W T. ASTROD (astrodynamical space test of relativity using optical devices) and ASTROD I[J]. Nuclear Physics B – Proceedings Supplements, 2007, 166: 153-158 doi: 10.1016/j.nuclphysbps.2006.12.067
    [37] NI W T. ASTROD and ASTROD I - Overview and progress[J]. International Journal of Modern Physics D, 2008, 17(7): 921-940 doi: 10.1142/S0218271808012619
    [38] NI W T. Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system[J]. Classical and Quantum Gravity, 2009, 26(7): 075021 doi: 10.1088/0264-9381/26/7/075021
    [39] NI W T. ASTROD-GW: Overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1): 1341004 doi: 10.1142/S0218271813410046
    [40] WU A M, NI W T. Deployment and simulation of the ASTROD-GW formation[J]. International Journal of Modern Physics D, 2013, 22(1): 1341005 doi: 10.1142/S0218271813410058
    [41] WANG G, NI W T. ASTROD-GW time delay interferometry[J]. Acta Astronomica Sinica, 2011, 52(5): 427-442
    [42] WANG G, NI W T. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris[J]. Chinese Physics B, 2013, 22(4): 049501 doi: 10.1088/1674-1056/22/4/049501
    [43] WANG G, NI W T. Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period[J]. Chinese Physics B, 2015, 24(5): 059501 doi: 10.1088/1674-1056/24/5/059501
    [44] SHIOMI S, NI W T. Acceleration disturbances and requirements for ASTROD I[J]. Classical and Quantum Gravity, 2006, 23(13): 4415-4432 doi: 10.1088/0264-9381/23/13/008
    [45] BAO G, LIU L, SHAUL D, et al. Further computation of the test mass charging and disturbances in ASTROD I[J]. Nuclear Physics B – Proceedings Supplements, 2007, 166: 246-248 doi: 10.1016/j.nuclphysbps.2006.12.017
    [46] 中国科学院空间领域战略研究组. 中国至2050年空间科技发展路线图[M]. 北京: 科学出版社, 2009

    Strategic Research Group in the Space Field of Chinese Academy of Sciences. Space Science and Technology in China: A Roadmap to 2050[M]. Beijing: Science Press, 2009
    [47] GONG X F, XU S N, BAI S, et al. A scientific case study of an advanced LISA mission[J]. Classical and Quantum Gravity, 2011, 28(9): 094012 doi: 10.1088/0264-9381/28/9/094012
    [48] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044

    LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
    [49] WU Y L. Space Gravitational Wave Detection in China[C]//Presentation to 1 st eLISA Consortium Meeting, APC-Paris: ESA, 2012
    [50] GONG X F, LAU Y K, XU S N, et al. Descope of the ALIA mission[J]. Journal of Physics:Conference Series, 2015, 610(1): 012011
    [51] CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593): 150-151 doi: 10.1038/531150a
    [52] HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686 doi: 10.1093/nsr/nwx116
    [53] CAI R G, CAO Z J, GUO Z K, et al. The gravitational-wave physics[J]. National Science Review, 2017, 4(5): 687-706 doi: 10.1093/nsr/nwx029
    [54] 黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测——天文学的一个新窗口[J]. 中国科学: 物理学 力学 天文学, 2017, 47(1): 010404

    HUANG Shuanglin, GONG Xuefei, XU Peng, et al. Gravitational wave detection in space—a new window in astronomy[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(1): 010404
    [55] RUAN W H, GUO Z K, CAI R G, et al. Taiji program: Gravitational-wave sources[J]. International Journal of Modern Physics A, 2020, 35(17): 2050075 doi: 10.1142/S0217751X2050075X
    [56] ZHAO Z W, WANG L F, ZHANG J F, et al. Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji[J]. Chinese Science Bulletin, 2020, 65(16): 1340-1348
    [57] LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: Science and technology[J]. Results in Physics, 2020, 16: 102918 doi: 10.1016/j.rinp.2019.102918
    [58] LUO Z R, WANG Y, WU Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108 doi: 10.1093/ptep/ptaa083
    [59] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10 doi: 10.15982/j.issn.2095-7777.2020.20191230001

    LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 doi: 10.15982/j.issn.2095-7777.2020.20191230001
    [60] LUO Z, ZHANG M, WU Y L. Recent status of Taiji program in China[J]. Chinese Journal of Space Science, 2022, 42(4): 536-538 doi: 10.11728/cjss2022.04.yg03
    [61] ZHAO M Y, PENG X D, YANG Z, et al. Preliminary simulation of intersatellite laser interference link for the Taiji program[J]. Journal of Astrnomical Telescope Instruments and Systems, 2022, 8(3): 038002
    [62] 罗子人, 张敏, 靳刚. 激光干涉引力波空间阵列核心问题的综合讨论[J]. 科学通报, 2019, 64(24): 2468-2474 doi: 10.1360/TB-2019-0055

    LUO Ziren, ZHANG Min, JIN Gang. Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna[J]. Chinese Science Bulletin, 2019, 64(24): 2468-2474 doi: 10.1360/TB-2019-0055
    [63] LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
    [64] HU Y M, MEI J W, LUO J. Science prospects for space-borne gravitational-wave missions[J]. National Science Review, 2017, 4(5): 683-684 doi: 10.1093/nsr/nwx115
    [65] 胡一鸣, 梅健伟, 罗俊. 天琴计划与国际合作[J]. 科学通报, 2019, 64(24): 2475-2483 doi: 10.1360/N972019-00046

    HU Yiming, MEI Jianwei, LUO Jun. TianQin project and international collaboration[J]. Chinese Science Bulletin, 2019, 64(24): 2475-2483 doi: 10.1360/N972019-00046
    [66] WANG H T, JIANG Z, SESANA A, et al. Science with the TianQin observatory: Preliminary results on massive black hole binaries[J]. Physical Review D, 2019, 100(4): 043003 doi: 10.1103/PhysRevD.100.043003
    [67] SHI C F, BAO J H, WANG H T, et al. Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals[J]. Physical Review D, 2019, 100(4): 044036 doi: 10.1103/PhysRevD.100.044036
    [68] HUANG S J, HU Y M, KOROL V, et al. Science with the TianQin Observatory: Preliminary results on Galactic double white dwarf binaries[J]. Physical Review D, 2020, 102(6): 063021 doi: 10.1103/PhysRevD.102.063021
    [69] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(1/2): 1-19 doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    LUO Jun, AI Linghao, AI Yanli, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1/2): 1-19 doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154
    [70] MILYUKOV V K. TianQin space-based gravitational wave detector: Key technologies and current state of implementation[J]. Astronomy Reports, 2020, 64(12): 1067-1077 doi: 10.1134/S1063772920120070
    [71] MEI J W, BAI Y Z, BAO J H, et al. The TianQin project: current progress on science and technology[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A107 doi: 10.1093/ptep/ptaa114
    [72] ZI T G, ZHANG J D, FAN H M, et al. Science with the TianQin Observatory: Preliminary results on testing the no-hair theorem with extreme mass ratio inspirals[J]. Physical Review D, 2021, 104(6): 064008 doi: 10.1103/PhysRevD.104.064008
    [73] LIANG Z C, HU Y M, JIANG Y, et al. Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background[J]. Physical Review D, 2022, 105(2): 022001 doi: 10.1103/PhysRevD.105.022001
    [74] WANG G, NI W T, HAN W B, et al. Numerical simulation of sky localization for LISA-TAIJI joint observation[J]. Physical Review D, 2020, 102(2): 024089 doi: 10.1103/PhysRevD.102.024089
    [75] RUAN W H, LIU C, GUO Z K, et al. The LISA-Taiji network[J]. Nature Astronomy, 2020, 4(2): 108-109 doi: 10.1038/s41550-019-1008-4
    [76] OMIYA H, SETO N. Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji[J]. Physical Review D, 2020, 102(8): 084053 doi: 10.1103/PhysRevD.102.084053
    [77] GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889 doi: 10.1038/s41550-021-01480-3
    [78] WANG G, NI W T, HAN W B, et al. Alternative LISA-TAIJI networks[J]. Physical Review D, 2021, 104(2): 024012 doi: 10.1103/PhysRevD.104.024012
    [79] WANG G, HAN W B. Observing gravitational wave polarizations with the LISA-TAIJI network[J]. Physical Review D, 2021, 103(6): 064021 doi: 10.1103/PhysRevD.103.064021
    [80] GUO Z K. Standard siren cosmology with the LISA-Taiji network[J]. Science China-Physics, Mechanics & Astronomy, 2022, 65(1): 210431
    [81] CHEN J, YAN C S, LU Y J, et al. On detecting stellar binary black holes via the LISA-Taiji network[J]. Research in Astronomy and Astrophysics, 2021, 21(11): 285 doi: 10.1088/1674-4527/21/11/285
    [82] KANG Y C, LIU C, SHAO L J. Prospects for detecting exoplanets around double white dwarfs with LISA and Taiji[J]. The Astronomical Journal, 2021, 162(6): 247 doi: 10.3847/1538-3881/ac23d8
    [83] RUAN W H, LIU C, GUO Z K, et al. The LISA-Taiji network: Precision localization of coalescing massive black hole binaries[J]. Research, 2021, 2021: 6014164
    [84] WANG G, HAN W B. Alternative LISA-TAIJI networks: Detectability of the isotropic stochastic gravitational wave background[J]. Physical Review D, 2021, 104(10): 104015 doi: 10.1103/PhysRevD.104.104015
    [85] ORLANDO G, PIERONI M, RICCIARDONE A. Measuring parity violation in the Stochastic Gravitational Wave Background with the LISA-Taiji network[J]. Journal of Cosmology and Astroparticle Physics, 2021, 2021(3): 069 doi: 10.1088/1475-7516/2021/03/069
    [86] WANG L F, JIN S J, ZHANG J F, et al. Forecast for cosmological parameter estimation with gravitational-wave standard sirens from the LISA-Taiji network[J]. Science China-Physics, Mechanics & Astronomy, 2022, 65(1): 210411
    [87] WANG R J, RUAN W H, YANG Q, et al. Hubble parameter estimation via dark sirens with the LISA-Taiji network[J]. National Science Review, 2022, 9(2): nwab054 doi: 10.1093/nsr/nwab054
    [88] YANG Y C, HAN W B, YUN Q Y, et al. Tracing astrophysical black hole seeds and primordial black holes with LISA-Taiji network[J]. Monthly Notices of the Royal Astronomical Society, 2022, 512(4): 6217-6224 doi: 10.1093/mnras/stac920
    [89] LIU G C, NG K W. Overlap reduction functions for a polarized stochastic gravitational-wave background in the Einstein Telescope-Cosmic Explorer and the LISA-Taiji networks[J]. Physical Review D, 2023, 107(10): 104040 doi: 10.1103/PhysRevD.107.104040
    [90] ZHANG X H, ZHAO S D, MOHANTY S D, et al. Resolving Galactic binaries using a network of space-borne gravitational wave detectors[J]. Physical Review D, 2022, 106(10): 102004 doi: 10.1103/PhysRevD.106.102004
    [91] ZHANG C, GONG Y G, LIU H, et al. Sky localization of space-based gravitational wave detectors[J]. Physical Review D, 2021, 103(10): 103013 doi: 10.1103/PhysRevD.103.103013
    [92] SETO N. Gravitational wave background search by correlating multiple triangular detectors in the mHz band[J]. Physical Review D, 2020, 102(12): 123547 doi: 10.1103/PhysRevD.102.123547
    [93] HU Q, LI M Z, NIU R, et al. Joint observations of space-based gravitational-wave detectors: Source localization and implications for parity-violating gravity[J]. Physical Review D, 2021, 103(6): 064057 doi: 10.1103/PhysRevD.103.064057
    [94] SHUMAN K J, CORNISH N J. Massive black hole binaries and where to find them with dual detector networks[J]. Physical Review D, 2022, 105(6): 064055 doi: 10.1103/PhysRevD.105.064055
    [95] LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013 doi: 10.1088/1361-6382/aba66a
    [96] The Taiji Scientific Collaboration. China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34 doi: 10.1038/s42005-021-00529-z
    [97] LUO Z R, ZHANG M, WU Y L. Taiji-1 satellite mission[J]. Chinese Journal of Space Science, 2020, 40(5): 691-692 doi: 10.11728/cjss2020.05.691
    [98] The Taiji Scientific Collaboration. Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1[M]. International Journal of Modern Physics A, 2021, 36(11/12): 2102002
  • 加载中
图(2)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  257
  • PDF下载量:  292
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-07-31
  • 网络出版日期:  2023-08-16

目录

    /

    返回文章
    返回