[1] |
LISA scientific collaboration. LISA L3 mission proposal [EB/OL]. (2017-02-23) https://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdf
|
[2] |
LISA scientific collaboration. LISA Pre-Phase A Report [EB/OL]. (1998-07-08) https://lisa.nasa.gov/archive2011/Documentation/ppa2.08.pdf
|
[3] |
LISA scientific collaboration. NGO, Revealing a hidden Universe: opening a new chapter of discovery-Assessment Study Report [EB/OL] . (2011-12-09) https://sci.esa.int/documents/34985/36280/1567258287202-NGO_YB.pdf
|
[4] |
LISA scientific collaboration. L1 Mission Reformulation, NGO - New Gravitational Wave Observer - Technical programmatic review report [EB/OL] . (2012-02-28) https://sci.esa.int/documents/34985/36280/1567258945033-NGO_technical_and_programmatic_review_report.pdf
|
[5] |
CESARSKY C and the Senior Survey Committee. Report of the Senior Survey Committee on the selection of the science themes for the L2 and L3 launch opportunities in the cosmic vision programme [EB/OL] . (2013-10-10) https://sci.esa.int/documents/34375/36249/1567259858030-ESA_Senior_Survey_Committee_report_L2 andL3_themes.pdf
|
[6] |
ARMANO M, AUDLEY H, AUGER G, et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101 doi: 10.1103/PhysRevLett.116.231101
|
[7] |
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: New LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101 doi: 10.1103/PhysRevLett.120.061101
|
[8] |
WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202 doi: 10.1038/s41567-019-0462-3
|
[9] |
ARMANO M, AUDLEY H, BAIRD J, et al. LISA pathfinder performance confirmed in an open-loop configuration: Results from the free-fall actuation mode[J]. Physical Review Letters, 2019, 123(11): 111101 doi: 10.1103/PhysRevLett.123.111101
|
[10] |
ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA Pathfinder: In-flight performance of the optical test mass readout[J]. Physical Review Letters, 2021, 126(13): 131103 doi: 10.1103/PhysRevLett.126.131103
|
[11] |
ESA. LISA mission moves to final design phase [EB/OL] . (2022-05-04) https://www.esa.int/Science_Exploration/Space_Science/LISA_mission_moves_to_final_design_phase
|
[12] |
BENDER P L. Additional astrophysical objectives for LISA follow-on missions[J]. Classical and Quantum Gravity, 2004, 21(5): S1203-S1208 doi: 10.1088/0264-9381/21/5/120
|
[13] |
BENDER P L, BEGELMAN M C, GAIR J R. Possible LISA follow-on mission scientific objectives[J]. Classical and Quantum Gravity, 2013, 30(16): 165017 doi: 10.1088/0264-9381/30/16/165017
|
[14] |
Phinney S, Bender P, Buchman R, et al. The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present[R]. NASA Lewis Research Center: NASA Mission Concept Study, 2004
|
[15] |
HARRY G M, FRITSCHEL P, SHADDOCK D A, et al. Laser interferometry for the Big Bang Observer[J]. Classical and Quantum Gravity, 2006, 23(15): 4887-4894 doi: 10.1088/0264-9381/23/15/008
|
[16] |
CUTLER C, HARMS J. Big Bang Observer and the neutron-star-binary subtraction problem[J]. Physical Review D, 2006, 73(4): 042001 doi: 10.1103/PhysRevD.73.042001
|
[17] |
CORBIN V, CORNISH N J. Detecting the cosmic gravitational wave background with the Big Bang Observer[J]. Classical and Quantum Gravity, 2006, 23(7): 2435-2446 doi: 10.1088/0264-9381/23/7/014
|
[18] |
SETO N, KAWAMURA S, NAKAMURA T. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space[J]. Physical Review Letters, 2001, 87(22): 221103 doi: 10.1103/PhysRevLett.87.221103
|
[19] |
KAWAMURA S, NAKAMURA T, ANDO M, et al. The Japanese space gravitational wave antenna – DECIGO[J]. Classical and Quantum Gravity, 2006, 23(8): S125-S131 doi: 10.1088/0264-9381/23/8/S17
|
[20] |
KAWAMURA S, ANDO M, SETO N, et al. The Japanese space gravitational wave antenna: DECIGO[J]. Classical and Quantum Gravity, 2011, 28(9): 094011 doi: 10.1088/0264-9381/28/9/094011
|
[21] |
SATO S, KAWAMURA S, ANDO M, et al. The status of DECIGO[J]. Journal of Physics: Conference Series, 2017, 840(1): 012010
|
[22] |
KAWAMURA S, NAKAMURA T, ANDO M, et al. Space gravitational-wave antennas DECIGO and B-DECIGO[J]. International Journal of Modern Physics D, 2019, 28(12): 1845001 doi: 10.1142/S0218271818450013
|
[23] |
KAWAMURA S, ANDO M, SETO N, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[J]. Progress of Theoretical and Experimental Physics, 2021, 5: 05A105
|
[24] |
NASA. Gravitational-wave mission concept study final report[EB/OL] . (2012-08-09) https://pcos.gsfc.nasa.gov/physpag/GW_Study_Rev3_Aug2012-Final.pdf
|
[25] |
TINTO M, DE ARAUJO J C N, AGUIAR O D, et al. A geostationary gravitational wave interferometer (GEOGRAWI)[OL]. arXiv preprint arXiv: 1111.2576, 2011
|
[26] |
MCWILLIAMS S T. Geostationary antenna for disturbance-free laser interferometry (GADFLI)[OL]. arXiv preprint arXiv: 1111.3708, 2011
|
[27] |
HISCOCK B, HELLINGS R W. OMEGA: a space gravitational wave MIDEX mission[J]. Bulletin of the Astronomical Society, 1997, 29(5): 1312
|
[28] |
HELLINGS R, LARSON S L, JENSEN S, et al. A low-cost, high-performance space gravitational astronomy mission[EB/OL]. (2011-01-20) https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0007-Hellings.pdf
|
[29] |
CONKLIN J W, BUCHMAN S, AGUERO V, et al. LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points[OL]. arXiv preprint arXiv: 1111.5264, 2011
|
[30] |
NI W T, SHY J T, TSENG S M, et al. Progress in mission concept study and laboratory development for the astrodynamical space test of relativity using optical devices (ASTROD)[C]//Proceedings Volume 3116, Small Spacecraft, Space Environments, and Instrumentation Technologies. San Diego: SPIE, 1997: 105-116
|
[31] |
RÜEDIGER A. Detecting gravitational waves with ground and space interferometers - with special attention to the space project ASTROD[J]. International Journal of Modern Physics D, 2002, 11(7): 963-994 doi: 10.1142/S0218271802002505
|
[32] |
NI W T. ASTROD - An overview[J]. International Journal of Modern Physics D, 2002, 11(7): 947-962 doi: 10.1142/S0218271802002499
|
[33] |
NI W T, BAO G, BAO Y, et al. ASTROD I, test of relativity, solar-system measurement and G-wave detection[J]. Journal of the Korean Physical Society, 2004, 45: S118-S123
|
[34] |
NI W T, SHIOMI S, LIAO A C. ASTROD, ASTROD I and their gravitational-wave sensitivities[J]. Classical and Quantum Gravity, 2004, 21(5): S641-S646 doi: 10.1088/0264-9381/21/5/037
|
[35] |
NI W T, BAO Y, DITTUS H, et al. ASTROD I: Mission concept and Venus flybys[J]. Acta Astronautica, 2006, 59(8/9/10/11): 598-607
|
[36] |
NI W T. ASTROD (astrodynamical space test of relativity using optical devices) and ASTROD I[J]. Nuclear Physics B – Proceedings Supplements, 2007, 166: 153-158 doi: 10.1016/j.nuclphysbps.2006.12.067
|
[37] |
NI W T. ASTROD and ASTROD I - Overview and progress[J]. International Journal of Modern Physics D, 2008, 17(7): 921-940 doi: 10.1142/S0218271808012619
|
[38] |
NI W T. Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system[J]. Classical and Quantum Gravity, 2009, 26(7): 075021 doi: 10.1088/0264-9381/26/7/075021
|
[39] |
NI W T. ASTROD-GW: Overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1): 1341004 doi: 10.1142/S0218271813410046
|
[40] |
WU A M, NI W T. Deployment and simulation of the ASTROD-GW formation[J]. International Journal of Modern Physics D, 2013, 22(1): 1341005 doi: 10.1142/S0218271813410058
|
[41] |
WANG G, NI W T. ASTROD-GW time delay interferometry[J]. Acta Astronomica Sinica, 2011, 52(5): 427-442
|
[42] |
WANG G, NI W T. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris[J]. Chinese Physics B, 2013, 22(4): 049501 doi: 10.1088/1674-1056/22/4/049501
|
[43] |
WANG G, NI W T. Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period[J]. Chinese Physics B, 2015, 24(5): 059501 doi: 10.1088/1674-1056/24/5/059501
|
[44] |
SHIOMI S, NI W T. Acceleration disturbances and requirements for ASTROD I[J]. Classical and Quantum Gravity, 2006, 23(13): 4415-4432 doi: 10.1088/0264-9381/23/13/008
|
[45] |
BAO G, LIU L, SHAUL D, et al. Further computation of the test mass charging and disturbances in ASTROD I[J]. Nuclear Physics B – Proceedings Supplements, 2007, 166: 246-248 doi: 10.1016/j.nuclphysbps.2006.12.017
|
[46] |
中国科学院空间领域战略研究组. 中国至2050年空间科技发展路线图[M]. 北京: 科学出版社, 2009Strategic Research Group in the Space Field of Chinese Academy of Sciences. Space Science and Technology in China: A Roadmap to 2050[M]. Beijing: Science Press, 2009
|
[47] |
GONG X F, XU S N, BAI S, et al. A scientific case study of an advanced LISA mission[J]. Classical and Quantum Gravity, 2011, 28(9): 094012 doi: 10.1088/0264-9381/28/9/094012
|
[48] |
罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
|
[49] |
WU Y L. Space Gravitational Wave Detection in China[C]//Presentation to 1 st eLISA Consortium Meeting, APC-Paris: ESA, 2012
|
[50] |
GONG X F, LAU Y K, XU S N, et al. Descope of the ALIA mission[J]. Journal of Physics:Conference Series, 2015, 610(1): 012011
|
[51] |
CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593): 150-151 doi: 10.1038/531150a
|
[52] |
HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686 doi: 10.1093/nsr/nwx116
|
[53] |
CAI R G, CAO Z J, GUO Z K, et al. The gravitational-wave physics[J]. National Science Review, 2017, 4(5): 687-706 doi: 10.1093/nsr/nwx029
|
[54] |
黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测——天文学的一个新窗口[J]. 中国科学: 物理学 力学 天文学, 2017, 47(1): 010404HUANG Shuanglin, GONG Xuefei, XU Peng, et al. Gravitational wave detection in space—a new window in astronomy[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(1): 010404
|
[55] |
RUAN W H, GUO Z K, CAI R G, et al. Taiji program: Gravitational-wave sources[J]. International Journal of Modern Physics A, 2020, 35(17): 2050075 doi: 10.1142/S0217751X2050075X
|
[56] |
ZHAO Z W, WANG L F, ZHANG J F, et al. Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji[J]. Chinese Science Bulletin, 2020, 65(16): 1340-1348
|
[57] |
LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: Science and technology[J]. Results in Physics, 2020, 16: 102918 doi: 10.1016/j.rinp.2019.102918
|
[58] |
LUO Z R, WANG Y, WU Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108 doi: 10.1093/ptep/ptaa083
|
[59] |
罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10 doi: 10.15982/j.issn.2095-7777.2020.20191230001LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 doi: 10.15982/j.issn.2095-7777.2020.20191230001
|
[60] |
LUO Z, ZHANG M, WU Y L. Recent status of Taiji program in China[J]. Chinese Journal of Space Science, 2022, 42(4): 536-538 doi: 10.11728/cjss2022.04.yg03
|
[61] |
ZHAO M Y, PENG X D, YANG Z, et al. Preliminary simulation of intersatellite laser interference link for the Taiji program[J]. Journal of Astrnomical Telescope Instruments and Systems, 2022, 8(3): 038002
|
[62] |
罗子人, 张敏, 靳刚. 激光干涉引力波空间阵列核心问题的综合讨论[J]. 科学通报, 2019, 64(24): 2468-2474 doi: 10.1360/TB-2019-0055LUO Ziren, ZHANG Min, JIN Gang. Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna[J]. Chinese Science Bulletin, 2019, 64(24): 2468-2474 doi: 10.1360/TB-2019-0055
|
[63] |
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
|
[64] |
HU Y M, MEI J W, LUO J. Science prospects for space-borne gravitational-wave missions[J]. National Science Review, 2017, 4(5): 683-684 doi: 10.1093/nsr/nwx115
|
[65] |
胡一鸣, 梅健伟, 罗俊. 天琴计划与国际合作[J]. 科学通报, 2019, 64(24): 2475-2483 doi: 10.1360/N972019-00046HU Yiming, MEI Jianwei, LUO Jun. TianQin project and international collaboration[J]. Chinese Science Bulletin, 2019, 64(24): 2475-2483 doi: 10.1360/N972019-00046
|
[66] |
WANG H T, JIANG Z, SESANA A, et al. Science with the TianQin observatory: Preliminary results on massive black hole binaries[J]. Physical Review D, 2019, 100(4): 043003 doi: 10.1103/PhysRevD.100.043003
|
[67] |
SHI C F, BAO J H, WANG H T, et al. Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals[J]. Physical Review D, 2019, 100(4): 044036 doi: 10.1103/PhysRevD.100.044036
|
[68] |
HUANG S J, HU Y M, KOROL V, et al. Science with the TianQin Observatory: Preliminary results on Galactic double white dwarf binaries[J]. Physical Review D, 2020, 102(6): 063021 doi: 10.1103/PhysRevD.102.063021
|
[69] |
罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(1/2): 1-19 doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154LUO Jun, AI Linghao, AI Yanli, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1/2): 1-19 doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154
|
[70] |
MILYUKOV V K. TianQin space-based gravitational wave detector: Key technologies and current state of implementation[J]. Astronomy Reports, 2020, 64(12): 1067-1077 doi: 10.1134/S1063772920120070
|
[71] |
MEI J W, BAI Y Z, BAO J H, et al. The TianQin project: current progress on science and technology[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A107 doi: 10.1093/ptep/ptaa114
|
[72] |
ZI T G, ZHANG J D, FAN H M, et al. Science with the TianQin Observatory: Preliminary results on testing the no-hair theorem with extreme mass ratio inspirals[J]. Physical Review D, 2021, 104(6): 064008 doi: 10.1103/PhysRevD.104.064008
|
[73] |
LIANG Z C, HU Y M, JIANG Y, et al. Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background[J]. Physical Review D, 2022, 105(2): 022001 doi: 10.1103/PhysRevD.105.022001
|
[74] |
WANG G, NI W T, HAN W B, et al. Numerical simulation of sky localization for LISA-TAIJI joint observation[J]. Physical Review D, 2020, 102(2): 024089 doi: 10.1103/PhysRevD.102.024089
|
[75] |
RUAN W H, LIU C, GUO Z K, et al. The LISA-Taiji network[J]. Nature Astronomy, 2020, 4(2): 108-109 doi: 10.1038/s41550-019-1008-4
|
[76] |
OMIYA H, SETO N. Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji[J]. Physical Review D, 2020, 102(8): 084053 doi: 10.1103/PhysRevD.102.084053
|
[77] |
GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889 doi: 10.1038/s41550-021-01480-3
|
[78] |
WANG G, NI W T, HAN W B, et al. Alternative LISA-TAIJI networks[J]. Physical Review D, 2021, 104(2): 024012 doi: 10.1103/PhysRevD.104.024012
|
[79] |
WANG G, HAN W B. Observing gravitational wave polarizations with the LISA-TAIJI network[J]. Physical Review D, 2021, 103(6): 064021 doi: 10.1103/PhysRevD.103.064021
|
[80] |
GUO Z K. Standard siren cosmology with the LISA-Taiji network[J]. Science China-Physics, Mechanics & Astronomy, 2022, 65(1): 210431
|
[81] |
CHEN J, YAN C S, LU Y J, et al. On detecting stellar binary black holes via the LISA-Taiji network[J]. Research in Astronomy and Astrophysics, 2021, 21(11): 285 doi: 10.1088/1674-4527/21/11/285
|
[82] |
KANG Y C, LIU C, SHAO L J. Prospects for detecting exoplanets around double white dwarfs with LISA and Taiji[J]. The Astronomical Journal, 2021, 162(6): 247 doi: 10.3847/1538-3881/ac23d8
|
[83] |
RUAN W H, LIU C, GUO Z K, et al. The LISA-Taiji network: Precision localization of coalescing massive black hole binaries[J]. Research, 2021, 2021: 6014164
|
[84] |
WANG G, HAN W B. Alternative LISA-TAIJI networks: Detectability of the isotropic stochastic gravitational wave background[J]. Physical Review D, 2021, 104(10): 104015 doi: 10.1103/PhysRevD.104.104015
|
[85] |
ORLANDO G, PIERONI M, RICCIARDONE A. Measuring parity violation in the Stochastic Gravitational Wave Background with the LISA-Taiji network[J]. Journal of Cosmology and Astroparticle Physics, 2021, 2021(3): 069 doi: 10.1088/1475-7516/2021/03/069
|
[86] |
WANG L F, JIN S J, ZHANG J F, et al. Forecast for cosmological parameter estimation with gravitational-wave standard sirens from the LISA-Taiji network[J]. Science China-Physics, Mechanics & Astronomy, 2022, 65(1): 210411
|
[87] |
WANG R J, RUAN W H, YANG Q, et al. Hubble parameter estimation via dark sirens with the LISA-Taiji network[J]. National Science Review, 2022, 9(2): nwab054 doi: 10.1093/nsr/nwab054
|
[88] |
YANG Y C, HAN W B, YUN Q Y, et al. Tracing astrophysical black hole seeds and primordial black holes with LISA-Taiji network[J]. Monthly Notices of the Royal Astronomical Society, 2022, 512(4): 6217-6224 doi: 10.1093/mnras/stac920
|
[89] |
LIU G C, NG K W. Overlap reduction functions for a polarized stochastic gravitational-wave background in the Einstein Telescope-Cosmic Explorer and the LISA-Taiji networks[J]. Physical Review D, 2023, 107(10): 104040 doi: 10.1103/PhysRevD.107.104040
|
[90] |
ZHANG X H, ZHAO S D, MOHANTY S D, et al. Resolving Galactic binaries using a network of space-borne gravitational wave detectors[J]. Physical Review D, 2022, 106(10): 102004 doi: 10.1103/PhysRevD.106.102004
|
[91] |
ZHANG C, GONG Y G, LIU H, et al. Sky localization of space-based gravitational wave detectors[J]. Physical Review D, 2021, 103(10): 103013 doi: 10.1103/PhysRevD.103.103013
|
[92] |
SETO N. Gravitational wave background search by correlating multiple triangular detectors in the mHz band[J]. Physical Review D, 2020, 102(12): 123547 doi: 10.1103/PhysRevD.102.123547
|
[93] |
HU Q, LI M Z, NIU R, et al. Joint observations of space-based gravitational-wave detectors: Source localization and implications for parity-violating gravity[J]. Physical Review D, 2021, 103(6): 064057 doi: 10.1103/PhysRevD.103.064057
|
[94] |
SHUMAN K J, CORNISH N J. Massive black hole binaries and where to find them with dual detector networks[J]. Physical Review D, 2022, 105(6): 064055 doi: 10.1103/PhysRevD.105.064055
|
[95] |
LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013 doi: 10.1088/1361-6382/aba66a
|
[96] |
The Taiji Scientific Collaboration. China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34 doi: 10.1038/s42005-021-00529-z
|
[97] |
LUO Z R, ZHANG M, WU Y L. Taiji-1 satellite mission[J]. Chinese Journal of Space Science, 2020, 40(5): 691-692 doi: 10.11728/cjss2020.05.691
|
[98] |
The Taiji Scientific Collaboration. Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1[M]. International Journal of Modern Physics A, 2021, 36(11/12): 2102002
|