留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参数自适应优化聚类的卫星状态异常检测方法

赵玉炜 苏举

赵玉炜, 苏举. 基于参数自适应优化聚类的卫星状态异常检测方法[J]. 空间科学学报, 2023, 43(5): 927-937. doi: 10.11728/cjss2023.05.2022-0054
引用本文: 赵玉炜, 苏举. 基于参数自适应优化聚类的卫星状态异常检测方法[J]. 空间科学学报, 2023, 43(5): 927-937. doi: 10.11728/cjss2023.05.2022-0054
ZHAO Yuwei, SU Ju. Satellite Anomaly Detection Method Based on Parameter Adaptive Optimization Clustering (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054
Citation: ZHAO Yuwei, SU Ju. Satellite Anomaly Detection Method Based on Parameter Adaptive Optimization Clustering (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054

基于参数自适应优化聚类的卫星状态异常检测方法

doi: 10.11728/cjss2023.05.2022-0054 cstr: 32142.14.cjss2023.05.2022-0054
基金项目: 中国科学院空间科学战略性先导科技专项项目资助(XDA15040100)
详细信息
    作者简介:
  • 中图分类号: V474

Satellite Anomaly Detection Method Based on Parameter Adaptive Optimization Clustering

  • 摘要: 对卫星在轨状态进行实时监测和异常检测,有利于保障卫星安全稳定运行。为解决在利用聚类分析检测卫星异常过程中,通过网格搜索选择最佳聚类超参数时精细度差、效率低的问题,本文将聚类超参数选择转化为单目标优化问题,并基于智能优化算法的启发式搜索能力,提出了超参数自适应优化的聚类算法UMOEAsII_BIRCH。为验证自适应搜索的有效性,在卫星遥测数据集和公开数据集上进行了测试。以网格搜索为基准,分别选取基于划分、基于密度和基于层次的聚类算法,对比自适应搜索和网格搜索两种方式下,异常检测的F1-score和算法执行时间。实验结果表明,自适应搜索克服了网格搜索中精细度与效率的矛盾,不受网格点的限制,异常检测效果优于基准方法,且在算法执行效率上具有显著优势。

     

  • 图  1  单点异常示例

    Figure  1.  Example of point anomaly

    图  2  集体异常示例

    Figure  2.  Example of collective anomalies

    图  3  序列异常示例(绿色曲线为异常序列,黄色和蓝色曲线表示正常序列)

    Figure  3.  Example of sequential anomalies (Green represents the abnormal sequence, yellow and blue represent normal sequence)

    图  4  属性相关性热力图

    Figure  4.  Attribute correlation heat map

    图  5  异常点分布(蓝色表示正常点,红色表示异常点)

    Figure  5.  Distribution of anomalies (Blue represents normal points, and red represents abnormal points)

    图  6  进化算法演化过程曲线

    Figure  6.  Evolution process curve of evolutionary algorithm

    图  7  参数网格搜索过程

    Figure  7.  Process of parameter grid searching

    表  1  混淆矩阵

    Table  1.   Confusion matrix

    预测类别
    正例负例
    真实类别正例TPFN
    负例FPTN
    下载: 导出CSV

    表  2  UMOEAs-II算法参数设置

    Table  2.   Parameter settings of UMOEAs-II

    最大评估次数种群大小问题维度超参数名称超参数取值范围
    UMOEAsII_MeanShift 120 5 2 quantile [0.01, 1.0]
    n_samples [500, 2000]
    UMOEAsII_K-Means 200 8 1 n_clusters [2, 1000]
    UMOEAsII_DBSCAN 1600 22 2 eps [0.2, 1.0]
    min_samples [2, 160]
    UMOEAsII_BIRCH 2500 36 2 threshold [0.001, 2.0]
    branching_factor [2, 200]
     问题维度,代表聚类算法要寻优的超参数个数。
    下载: 导出CSV

    表  3  网格搜索测试参数组合

    Table  3.   Parameter combinations of grid search

    算法名称超参数名称超参数取值范围搜索步长网格点数
    MeanShift quantile (0.001, 1.0) 0.025 120
    n_samples (500, 2000) 500
    K-Means n_clusters (2, 1000) 5 200
    DBSCAN eps (0.2, 1.0) 0.02 1600
    min_samples (2, 160) 4
    BIRCH threshold (0.001, 2.0) 0.04 2500
    branching_factor (2, 200) 4
    下载: 导出CSV

    表  4  算法测试结果对比

    Table  4.   Comparison of algorithm test results

    F1-score
    最优值
    F1-score
    最差值
    F1-score
    均值
    F1-score
    方差
    算法执行时间/s
    MeanShift0.69220.69220.69220.000004780
    UMOEAsII_MeanShift0.69220.69220.69220.000004087
    K-Means0.80060.75450.78710.01994156639
    UMOEAsII_K-Means0.80060.76500.79690.01066104939
    DBSCAN0.82970.82770.82860.00066502272
    UMOEAsII_DBSCAN0.83050.82940.82980.00039394553
    BIRCH0.85190.77340.81910.02580172106
    UMOEAsII_BIRCH0.86100.85420.85680.0020586930
     加粗数据表示最优结果。
    下载: 导出CSV

    表  5  UMOEAs-II算法参数设置

    Table  5.   Parameter settings of UMOEAs-II

    最大评估次数种群大小问题维度超参数名称超参数取值范围
    UMOEAsII_K-Means 200 8 1 n_clusters [2, 1000]
    UMOEAsII_DBSCAN 1200 22 2 eps [0.1, 1.0]
    min_samples [2, 160]
    UMOEAsII_BIRCH 1600 24 2 threshold [0.001, 2.0]
    branching_factor [2, 200]
    下载: 导出CSV

    表  6  网格搜索测试参数组合

    Table  6.   Parameter combinations of grid search

    算法名称超参数名称超参数取值范围搜索步长网格点数
    K-Means n_clusters (2, 1000) 5 200
    DBSCAN eps (0.1, 1.0) 0.03 1200
    min_samples (2, 160) 4
    BIRCH threshold (0.001, 2.0) 0.05 1600
    branching_factor (2, 200) 5
    下载: 导出CSV

    表  7  算法测试结果

    Table  7.   Algorithm test results



    F1-score
    最优值
    F1-score
    最差值
    F1-score
    均值
    F1-score
    方差
    算法执行时间/s
    K-Means0.59650.53480.56742.6505×10–21091.75
    UMOEAsII_K-Means0.59650.59650.59652.3406×10–16681.86
    DBSCAN0.46390.44700.45714.7600×10–31443.58
    UMOEAsII_DBSCAN0.46710.46710.46714.6800×10–161299.00
    BIRCH0.61390.48650.53793.8275×10–22944.44
    UMOEAsII_BIRCH0.64150.64150.64150.00001351.90
     加粗数据表示最优结果。
    下载: 导出CSV
  • [1] PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on Kernel Principal Component Analysis[J]. Microelectronics Reliability, 2015, 55(9/10): 2082-2086
    [2] ZHENG L, GUANG J, TANG S H. Fluctuation feature extraction of satellite telemetry data and on-orbit anomaly detection[C]//2016 Prognostics and System Health Management Conference. Chengdu: IEEE, 2017: 1-5
    [3] 赵佳, 吕弘, 刘宝, 等. 基于模糊Petri网的卫星导航接收系统故障诊断[J]. 测试技术学报, 2017, 31(5): 438-442

    ZHAO Jia, LV Hong, LIU Bao, et al. Fault diagnosis for GNSS receiver based on fuzzy Petri Net[J]. Journal of Test and Measurement Technology, 2017, 31(5): 438-442
    [4] 张怀峰, 江婧, 张香燕, 等. 面向卫星电源系统的一种新颖异常检测方法[J]. 宇航学报, 2019, 40(12): 1468-1477 doi: 10.3873/j.issn.1000-1328.2019.12.011

    ZHANG Huaifeng, JIANG Jing, ZHANG Xiangyan, et al. Novel anomaly detection method for satellite power system[J]. Journal of Astronautics, 2019, 40(12): 1468-1477 doi: 10.3873/j.issn.1000-1328.2019.12.011
    [5] 李钰骙, 李虎, 胡钛. 基于LightGBM的HXMT在轨运行模式监测算法[J]. 空间科学学报, 2020, 40(1): 109-116 doi: 10.11728/cjss2020.01.109

    LI Yukui, LI Hu, HU Tai. In-orbit operational pattern monitoring algorithms based on LightGBM for Hard X-ray Modulation Telescope Satellite[J]. Chinese Journal of Space Science, 2020, 40(1): 109-116 doi: 10.11728/cjss2020.01.109
    [6] 李虎, 郭国航, 胡钛, 等. 遥测参数数据载荷状态判别集成学习方法[J]. 国防科技大学学报, 2021, 43(6): 33-40

    LI Hu, GUO Guohang, HU Tai, et al. Ensemble learning for state recognition of payload from telemetry data[J]. Journal of National University of Defense Technology, 2021, 43(6): 33-40
    [7] CASAS P, MAZEL J, OWEZARSKI P. UNADA: unsupervised network anomaly detection using sub-space outliers ranking[C]//Proceedings of the 10 th International Conference on Research in Networking. Valencia: Springer, 2011: 40-51
    [8] 陆春光, 叶方彬, 赵羚, 等. 基于密度峰值聚类的电力大数据异常值检测算法[J]. 科学技术与工程, 2020, 20(2): 654-658

    LU Chunguang, YE Fangbin, ZHAO Ling, et al. Abnormal value detection of large power data based on density peak clustering[J]. Science Technology and Engineering, 2020, 20(2): 654-658
    [9] WANG H, PENG M J, YU Y, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J]. Annals of Nuclear Energy, 2021, 150: 107786 doi: 10.1016/j.anucene.2020.107786
    [10] 李楠, 强懿耕, 樊瑞, 等. 基于异常因子的航空器飞行轨迹异常检测研究[J]. 安全与环境学报, 2021, 21(2): 643-648

    LI Nan, QIANG Yigeng, FAN Rui, et al. On the abnormal detection of the aircraft flight trajectory based on the abnormal factor statistics[J]. Journal of Safety and Environment, 2021, 21(2): 643-648
    [11] 彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945

    PENG Xiyuan, PANG Jingyue, PENG Yu, et al. Review on anomaly detection of spacecraft telemetry data[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945
    [12] 康旭. 时序遥测数据异常检测方法研究[D]. 南京: 南京航空航天大学, 2018

    KANG Xu. Anomaly Detection Method for Sequential Telemetry Data[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018
    [13] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1999, 25(2): 103-114
    [14] 陈婧文. 基于链接改进的BIRCH算法的研究与应用[D]. 长春: 吉林大学, 2019

    CHEN Jingwen. Research and Application of an Improved BIRCH Algorithm Based on Link[D]. Changchun: Jilin University, 2019
    [15] ELSAYED S, HAMZA N, SARKER R. Testing united multi-operator evolutionary algorithms-II on single objective optimization problems[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 2966-2973
    [16] ELSAYED S M, SARKER R A, ESSAM D L, et al. Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization[C]//2014 IEEE Congress on Evolutionary Computation (CEC). Beijing: IEEE, 2014: 1650-1657
    [17] HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A survey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(2): 133-155 doi: 10.1109/TSMCC.2008.2007252
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  101
  • PDF下载量:  72
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-12-05
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回