留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月球熔岩管探测中月表杂波识别方法仿真

马士璇 董晓龙 朱迪 马剑英 白东锦

马士璇, 董晓龙, 朱迪, 马剑英, 白东锦. 月球熔岩管探测中月表杂波识别方法仿真[J]. 空间科学学报, 2023, 43(5): 853-863. doi: 10.11728/cjss2023.05.2023-0017
引用本文: 马士璇, 董晓龙, 朱迪, 马剑英, 白东锦. 月球熔岩管探测中月表杂波识别方法仿真[J]. 空间科学学报, 2023, 43(5): 853-863. doi: 10.11728/cjss2023.05.2023-0017
MA Shixuan, DONG Xiaolong, ZHU Di, MA Jianying, BAI Dongjin. Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 853-863 doi: 10.11728/cjss2023.05.2023-0017
Citation: MA Shixuan, DONG Xiaolong, ZHU Di, MA Jianying, BAI Dongjin. Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 853-863 doi: 10.11728/cjss2023.05.2023-0017

月球熔岩管探测中月表杂波识别方法仿真

doi: 10.11728/cjss2023.05.2023-0017 cstr: 32142.14.cjss2023.05.2023-0017
基金项目: 国家重点研发计划项目资助(2021YFB3900100, 2021YFB3900102)
详细信息
    作者简介:
  • 中图分类号: P631

Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration

  • 摘要: 月球上可能存在大量可用于抗辐射、躲避陨石撞击和月球表面极端温度变化的熔岩管。月球表面杂波识别以及与熔岩管目标回波的区分是月球熔岩管目标探测的重要问题。根据高频电磁波与低频电磁波在月壤中的路径衰减快慢不同,熔岩管道高低频功率比与月表杂波高低频功率比不同的特征,提出了一种利用高低频电磁波功率比进行月表杂波识别的方法。基于分辨率、回波功率、信杂比和信噪比对熔岩管探测雷达进行了参数优化设计,建立了仿真系统,利用伪谱时域方法对不同走向的月球熔岩管回波进行了仿真研究。仿真结果表明了利用回波的高低频功率比区分月表杂波和熔岩管回波的有效性,熔岩管道高低频回波和月表杂波高低频回波功率比与熔岩管埋深度呈正相关,与频率比呈正相关。

     

  • 图  1  三维熔岩管观测几何

    Figure  1.  3D lava tube observation geometry

    图  2  月球地层介电常数

    Figure  2.  Dielectric constant of lunar strata

    图  3  月球地层损耗正切

    Figure  3.  Loss tangent of lunar strata

    图  4  双频回波功率及功率比

    Figure  4.  Dual frequency echo power and power ratio diagram

    图  5  30 MHz回波信杂比与信噪比

    Figure  5.  Echo signal SCR and SNR at 30 MHz

    图  6  60 MHz回波信杂比与信噪比

    Figure  6.  Echo signal SCR and SNR at 60 MHz

    图  7  90 MHz回波信杂比与信噪比

    Figure  7.  Echo signal SCR and SNR at 90 MHz

    图  8  不同频率下的熔岩管可探测性

    Figure  8.  Detectability of lava tubes at different frequencies

    图  9  交轨走向熔岩管

    Figure  9.  Orbit crossing towards lava tube

    图  10  熔岩管回波仿真结果

    Figure  10.  Lava tube echo simulation results

    图  11  熔岩管仿真建模

    Figure  11.  Lava tube simulation model

    图  12  双频回波归一化功率

    Figure  12.  Dual frequency echo normalized power

    图  13  多频熔岩管回波功率比

    Figure  13.  Multi-frequency lava tube echo power ratio

    图  14  (77° N,113°W)地形

    Figure  14.  Topography of (77° N,113°W)

    图  15  DEM地形仿真建模

    Figure  15.  DEM terrain simulation model

    图  16  真实地形双频回波功率

    Figure  16.  Real terrain dual-frequency echo power

    表  1  雷达仿真参数

    Table  1.   Lidar simulation parameters

    中心频率/MHz30, 60, 90
    带宽/MHz20
    信号形式Chirp
    峰值功率/W800
    天线增益/dB1.64
    飞行高度/km100
    下载: 导出CSV
  • [1] CHAPPAZ L, SOOD R, MELOSH H J, et al. Evidence of large empty lava tubes on the Moon using GRAIL gravity[J]. Geophysical Research Letters, 2017, 44(1): 105-112 doi: 10.1002/2016GL071588
    [2] BLAIR D M, CHAPPAZ L, SOOD R, et al. The structural stability of lunar lava tubes[J]. Icarus, 2017, 282: 47-55 doi: 10.1016/j.icarus.2016.10.008
    [3] HARUYAMA J, SAWAI S, MIZUNO T, et al. Exploration of lunar holes, possible skylights of underlying lava tubes, by Smart Lander for Investigating Moon (SLIM)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(ists28): Pk_7-Pk_10
    [4] HARUYAMA J, MOROTA T, KOBAYASHI S, et al. Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration[M]//BADESCU V. Moon: Prospective Energy and Material Resources. Berlin, Heidelberg: Springer, 2012
    [5] GREEN J. The geology of the lunar base[J]. Annals of the New York Academy of Sciences, 1963, 105(9): 491-625 doi: 10.1111/j.1749-6632.1963.tb42992.x
    [6] DE ANGELIS G, WILSON J W, CLOWDSLEY M S, et al. Lunar lava tube radiation safety analysis[J]. Journal of Radiation Research, 2002, 43(S): S41-S45 doi: 10.1269/jrr.43.S41
    [7] ECKART P. The Lunar Base Handbook: an Introduction to Lunar Base Design, Development, and Operations[M]. 2 nd ed. Boston: McGraw-Hill, 2006
    [8] KAKU T, HARUYAMA J, MIYAKE W, et al. Detection of intact lava tubes at marius hills on the moon by SELENE (Kaguya) Lunar Radar sounder[J]. Geophysical Research Letters, 2017, 44(20): 10155-10161
    [9] KOBAYASHI T, KIM J H, LEE S R, et al. Nadir detection of lunar lava tube by Kaguya Lunar Radar Sounder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7395-7418 doi: 10.1109/TGRS.2020.3033033
    [10] SOOD R, MELOSH J, HOWELL K. Lunar advanced Radar orbiter for subsurface sounding (LAROSS): Lava Tube Exploration mission[C]//Proceedings of the 26 th AAS/AIAA Space Flight Mechanics Meeting. Napa: Reserch Gate, 2016
    [11] CARRER L, BRUZZONE L. Solving for ambiguities in Radar geophysical exploration of planetary bodies by mimicking bats echolocation[J]. Nature Communications, 2017, 8: 2248 doi: 10.1038/s41467-017-02334-1
    [12] HÖRZ F. Lava tubes: potential shelters for habitats[M]//MENDELL W W. Lunar Bases and Space Activities of the 21st Century. Houston: Lunar and Planetary Institute, 1985
    [13] FRISILLO A L, OLHOEFT G R, STRANGWAY D W. Effects of vertical stress, temperature and density on the dielectric properties of lunar samples 72441, 12, 15301, 38 and a terrestrial basalt[J]. Earth and Planetary Science Letters, 1975, 24(3): 345-356 doi: 10.1016/0012-821X(75)90140-5
    [14] WAGNER N, EMMERICH K, BONITZ F, et al. Experimental investigations on the frequency- and temperature-dependent dielectric material properties of soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2518-2530 doi: 10.1109/TGRS.2011.2108303
    [15] OLHOEFT G R, STRANGWAY D W. Dielectric properties of the first 100 meters of the Moon[J]. Earth and Planetary Science Letters, 1975, 24(3): 394-404 doi: 10.1016/0012-821X(75)90146-6
    [16] HEIKEN G H, VANIMAN D T, FRENCH B N. Lunar Sourcebook[M]. Cambridge: Cambridge University Press, 1991
    [17] 贺林峰. 月表微波辐射与散射计算及次表层结构探测[D]. 武汉: 华中科技大学, 2012

    HE Linfeng. Computation of Microwave Radiation and Scattering from Lunar Surface and Subsurface Layer Detection[D]. Wuhan: Huazhong University of Science and Technology, 2012
    [18] HELFENSTEIN P, SHEPARD M K. Submillimeter-scale topography of the Lunar regolith[J]. Icarus, 1999, 141(1): 107-131 doi: 10.1006/icar.1999.6160
    [19] ROSENBURG M A, AHARONSON O, HEAD J W, et al. Global surface slopes and roughness of the moon from the Lunar Orbiter Laser Altimeter[J]. Journal of Geophysical Research Planets, 2011, 116(E2): E02001
    [20] RENAU J, COLLINSON J A. Measurements of electromagnetic back-scattering from known, rough surfaces[J]. The Bell System Technical Journal, 1965, 44(10): 2203-2226 doi: 10.1002/j.1538-7305.1965.tb04144.x
    [21] TSANG L, KONG J A, DING K H, et al. Scattering and Emission by a Periodic Rough Surface[M]//TSANG L, KONG J A, DING K H, et al. Scattering of Electromagnetic Waves: Numerical Simulations. New York: John Wiley & Sons, 2001
    [22] 任新成, 郭立新, 刘生春. 基于微扰法的高斯粗糙面电磁散射研究[J]. 延安大学学报(自然科学版), 2006, 25(1): 26-30

    REN Xincheng, GUO Lixin, LIU Shengchun. Study on electromagnetic scattering from gaussian rough surface by applying the small perturbation method[J]. Journal of Yanan University (Natural Science Edition), 2006, 25(1): 26-30
    [23] KRAUS J D. Radio Astronomy[M]. New York: McGraw-Hill, 1966
    [24] CARRER L, GEREKOS C, BRUZZONE L. A multi-frequency radar sounder for lava tubes detection on the moon: design, performance assessment and simulations[J]. Planetary and Space Science, 2018, 152: 1-17 doi: 10.1016/j.pss.2018.01.011
    [25] LEI Y, HAYNES M S, ARUMUGAM D, et al. A 2-D Pseudospectral Time-Domain (PSTD) simulator for large-scale electromagnetic scattering and Radar sounding applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4076-4098 doi: 10.1109/TGRS.2019.2960751
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  173
  • PDF下载量:  67
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-04-08
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回