留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴电场对LHAASO观测面宇宙线次级粒子横向分布的影响

陈林 周勋秀 阿西克古 黄代绘 王培汉 陈学健

陈林, 周勋秀, 阿西克古, 黄代绘, 王培汉, 陈学健. 雷暴电场对LHAASO观测面宇宙线次级粒子横向分布的影响[J]. 空间科学学报, 2023, 43(5): 833-839. doi: 10.11728/cjss2023.05.2023-0027
引用本文: 陈林, 周勋秀, 阿西克古, 黄代绘, 王培汉, 陈学健. 雷暴电场对LHAASO观测面宇宙线次级粒子横向分布的影响[J]. 空间科学学报, 2023, 43(5): 833-839. doi: 10.11728/cjss2023.05.2023-0027
CHEN Lin, ZHOU Xunxiu, Axikegu, HUANG Daihui, WANG Peihan, CHEN Xuejian. Effects of Thunderstorms Electric Field on the Lateral Distribution of Cosmic Ray Secondary Particles at LHAASO (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 833-839 doi: 10.11728/cjss2023.05.2023-0027
Citation: CHEN Lin, ZHOU Xunxiu, Axikegu, HUANG Daihui, WANG Peihan, CHEN Xuejian. Effects of Thunderstorms Electric Field on the Lateral Distribution of Cosmic Ray Secondary Particles at LHAASO (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 833-839 doi: 10.11728/cjss2023.05.2023-0027

雷暴电场对LHAASO观测面宇宙线次级粒子横向分布的影响

doi: 10.11728/cjss2023.05.2023-0027 cstr: 32142.14.cjss2023.05.2023-0027
基金项目: 国家自然科学基金项目资助(U2031101, 11475141)
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: P353

Effects of Thunderstorms Electric Field on the Lateral Distribution of Cosmic Ray Secondary Particles at LHAASO

  • 摘要: 在雷暴电场的偏转作用下,宇宙线次级粒子到达探测面的位置将受到影响,其横向分布也将发生变化。本文采用Monte Carlo方法,研究雷暴期间LHAASO观测面(海拔约4400 m)宇宙线次级粒子横向分布的变化。结果表明,雷暴期间次级粒子的横向分布将变宽,其变化幅度与电场强度有关,与天顶角、原初能量也有很强的依赖关系。在–1700 V·cm–1的电场中,次级粒子横向分布的变化幅度在天顶角0°时为3.8%,天顶角50°时为34%;当原初能量约180 GeV时,次级粒子横向分布的变化幅度为9.9%,原初能量约560 TeV时,其变化幅度高达119%。本文的模拟结果可为理解雷暴电场偏转宇宙线次级粒子的物理机制、雷暴期间LHAASO中宇宙线数据的变化规律提供信息。

     

  • 图  1  簇射事例中次级粒子密度在LHAASO观测面的位置分布

    Figure  1.  Position distribution of secondary particles at LHAASO

    图  2  次级粒子密度随芯距的变化

    Figure  2.  Secondary particle density as a function of core distance

    图  3  雷暴电场中归一化后的横向分布

    Figure  3.  Normalized particle density as a function of core distance in electric fields

    图  4  雷暴电场中次级粒子平均横向半径随天顶角的分布

    Figure  4.  Mean lateral radius of secondary particles as a function of zenith angle in electric fields

    图  5  雷暴电场中归一化后的横向分布

    Figure  5.  Normalized particle density as a function of core distance in electric fields

    图  6  雷暴期间次级粒子的平均横向半径随原初能量的分布

    Figure  6.  Mean lateral radius of secondary particles as a function of primary energy in electric fields

    图  7  雷暴电场中次级粒子平均横向半径的变化随原初能量的变化

    Figure  7.  Percent change of mean lateral radius as a function of primary energy in different electric fields

    图  8  次级负电子与正电子的数目比值随芯距的变化

    Figure  8.  Ratios of Secondary electrons to positrons as a function of core distance

    图  9  次级粒子的平均能量随芯距的变化

    Figure  9.  Mean energy of secondary particles as a function of core distance

  • [1] HUANG Zhicheng, ZHOU Xunxiu, HUANG Daihui, et al. Simulation study of scaler mode at large high altitude air shower observatory[J]. Acta Physica Sinica, 2021, 70(19): 199301 doi: 10.7498/aps.70.20210632
    [2] WANG Kongsen, WANG He, HUANG Xingtao, et al. Study on the production characteristics of cosmic ray high energy family events with simulation and experiment[J]. High Energy Physics and Nuclear Physics, 2004, 28(3): 232-238 doi: 10.3321/j.issn:0254-3052.2004.03.004
    [3] MARSHALL T C, RUST W D, STOLZENBURG M. Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. Journal of Geophysical Research, 1995, 100(D1): 1001-1015 doi: 10.1029/94JD02607
    [4] MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophysical Research Letters, 2005, 32(3): L03813
    [5] GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Physics Letters A, 1992, 165(5/6): 463-468
    [6] ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China)[J]. Acta Physica Sinica, 2015, 64(14): 149202 doi: 10.7498/aps.64.149202
    [7] CHILINGARIAN A, HOVSEPYAN G, ZAZYAN M. Muon tomography of charged structures in the atmospheric electric field[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094594 doi: 10.1029/2021GL094594
    [8] HEUMESSER M, CHANRION O, NEUBERT T, et al. Spectral observations of optical emissions associated with terrestrial gamma-ray flashes[J]. Geophysical Research Letters, 2021, 48(4): 2020GL090700 doi: 10.1029/2020GL090700
    [9] WADA Y, MATSUMOTO T, ENOTO T, et al. Catalog of gamma-ray glows during four winter seasons in Japan[J]. Physical Review Research, 2021, 3(4): 043117 doi: 10.1103/PhysRevResearch.3.043117
    [10] AXIKEGU, BARTOLI B, BERNARDINI P, et al. Cosmic ray shower rate variations detected by the ARGO-YBJ experiment during thunderstorms[J]. Physical Review D, 2022, 106(2): 022008 doi: 10.1103/PhysRevD.106.022008
    [11] TSUCHIYA H, HIBINO K, KAWATA K, et al. Observation of thundercloud-related gamma rays and neutrons in Tibet[J]. Physical Review D, 2012, 85(9): 092006 doi: 10.1103/PhysRevD.85.092006
    [12] CHILINGARIAN A, HOVSEPYAN G, ASLANYAN D, et al. Thunderstorm ground enhancements: multivariate analysis of 12 years of observations[J]. Physical Review D, 2022, 106(8): 082004 doi: 10.1103/PhysRevD.106.082004
    [13] FISHMAN G J, BHAT P N, MALLOZZI R, et al. Discovery of intense gamma-ray flashes of atmospheric origin[J]. Science, 1994, 264(5163): 1313-1316 doi: 10.1126/science.264.5163.1313
    [14] BRIGGS M S, FISHMAN G J, CONNAUGHTON V, et al. First results on terrestrial gamma ray flashes from the Fermi gamma-ray burst monitor[J]. Journal of Geophysical Research, 2010, 115(A7): A07323
    [15] NEUBERT T, ØSTGAARD N, REGLERO V, et al. A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning[J]. Science, 2020, 367(6474): 183-186 doi: 10.1126/science.aax3872
    [16] TSUCHIYA H, ENOTO T, YAMADA S, et al. Long-duration γ ray emissions from 2007 and 2008 winter thunderstorms[J]. Journal of Geophysical Research, 2011, 116(D9): D09113
    [17] CHILINGARIAN A, MAILYAN B, VANYAN L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds[J]. Atmospheric Research, 2012, 114-115: 1-16 doi: 10.1016/j.atmosres.2012.05.008
    [18] YAN Ruirui, HUANG Daihui, ZHAO Bing, et al. Effects of thunderstorms electric field on energy of cosmic rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71 doi: 10.11728/cjss2020.01.065
    [19] VANYAN L, CHILINGARYAN A. Simulations of the Relativistic Runaway Electron Avalanches (RREA) in the thunderclouds above the Aragats space Environmental center (ASEC)[C]//Proceedings of the 32 nd International Cosmic Ray Conference. Beijing: International Cosmic Ray Conference, 2011: 338-341
    [20] MA X H, BI Y J, CAO Z, et al. Chapter 1 LHAASO instruments and detector technology[J]. Chinese Physics C, 2022, 46(3): 030001 doi: 10.1088/1674-1137/ac3fa6
    [21] WANG P H, HUANG D H, ZHOU X X, et al. Characteristics of near-earth thunderstorm electric fields at LHAASO observatory[C]//Proceedings of Science. Berlin: Sissa Medialab Srl, 2022: 1-10
    [22] JIA H Y, FENG L, RUFFOLO D, et al. Chapter 7 solar and heliospheric physics and interdisciplinary research with LHAASO[J]. Chinese Physics C, 2022, 46(3): 030007 doi: 10.1088/1674-1137/ac3fae
    [23] HECK D, KNAPP J, CAPDEVIELLE J, et al. CORSIKA: a Monte Carlo code to simulate extensive air showers[EB/OL]. [2023-02-15]. https://www.ikp.kit.edu/corsika/70.php
    [24] DWYER J R. A fundamental limit on electric fields in air[J]. Geophysical Research Letters, 2003, 30(20): 2055
    [25] SYMBALISTY E M D, ROUSSEL-DUPRE R A, YUKHIMUK V A. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Transactions on Plasma Science, 1998, 26(5): 1575-1582 doi: 10.1109/27.736065
    [26] AXI K G, ZHOU X X, HUANG Z C, et al. Intensity variations of showers with different zenith angle ranges during thunderstorms[J]. Astrophysics and Space Science, 2022, 367(3): 30 doi: 10.1007/s10509-022-04056-3
    [27] ZHOU X X, WANG X J, HUANG D H, et al. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet[J]. Astroparticle Physics, 2016, 84: 107-114 doi: 10.1016/j.astropartphys.2016.08.004
  • 加载中
图(9)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  91
  • PDF下载量:  42
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-02-17
  • 修回日期:  2023-04-17
  • 网络出版日期:  2023-07-26

目录

    /

    返回文章
    返回