不同重力环境和倾斜角度对毛细管内界面振荡行为的影响
doi: 10.11728/cjss2023.05.2023-05-yg09 cstr: 32142.14.cjss2023.05.2023-05-yg09
Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise
-
摘要: 毛细现象与界面动态演化在航天器工程及空间流体管理中具有重要作用。在常重力条件下已发现毛细管内会产生界面振荡现象,该现象主要与毛细尺度、流体物性和壁面润湿性等因素相关。然而在空间应用过程中,毛细界面运动受到倾斜角度和重力环境变化的影响,其常规振荡行为会发生改变。针对这一问题,建立了毛细管内界面演化过程的理论模型,同时开展了数值模拟研究,获得不同重力条件及倾斜角度对毛细管内界面振荡行为的影响规律和可视化结果。研究表明,毛细管内界面振荡行为由Ohnesorge数(Oh)和Bond数(Bo)的比值决定。随着重力加速度增大,Oh/Bo变小,振荡现象加剧。毛细管倾斜后,界面振荡行为受到沿毛细管方向重力分量的影响,毛细振荡效应随倾斜角度的增加而弱化。Abstract: The dynamic evolution of interface in capillary plays an important role in spacecraft engineering and space fluid management. The process of interfacial oscillation in capillary has been well observed on the ground, which is related to factors such as capillary size, fluid properties and the wall’s wettability. However, in practical applications in space, the capillary rise and oscillation of the interface will be affected by the tilt angle of the capillary tube and gravity level. For this reason, the process of the interface oscillation in a capillary tube is investigated in this work considering the effects of gravity level and the tilt angle of the tube. A mathematical model is built and numerical simulation is performed to obtain adequate details of the interface oscillation. It is shown that the oscillation feature of the capillary interface is determined by the ratio of Ohnesorge number (Oh) to Bond number (Bo). The Oh/Bo value decreases with gravitational acceleration level, which enhances the oscillation strength. When the capillary tube is tilted, the interface’s oscillation is affected by the component of gravity force along the capillary direction. As the tilt angle increases, the capillary oscillation phenomenon is weakened.
-
Key words:
- Variable gravity /
- Tilted capillary /
- Oscillation /
- Theoretical model /
- Numerical simulation
-
表 1 流体参数属性
Table 1. Properties of the fluid parameter
工质名称 密度$\rho /({\mathrm{k}\mathrm{g} }^{}\cdot {\mathrm{m} }^{-3})$ 黏度 $ \mu /(\mathrm{m}\mathrm{P}\mathrm{a}\cdot \mathrm{s}) $ 表面张力$ \sigma /(\mathrm{m}\mathrm{N}\cdot {\text{m}}^{-1}) $ 设置的初始
接触角$ {\theta }_{0} $/(°)HFE-7100 1520 0.93 13.6 20 去离子水 997 0.89 72 45 乙醇 785 1.08 21.9 30 -
[1] 杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014YANG Tao, ZHAO Shilei, GAO Teng, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014 [2] WANG C X, XU S H, SUN Z W, et al. Influence of contact angle and tube size on capillary-driven flow under microgravity[J]. AIAA Journal, 2009, 47(11): 2642-2648 doi: 10.2514/1.41899 [3] 孙鹏程. 自输液表面设计制备及基础应用研究[D]. 南京: 南京航空航天大学, 2021SUN Pengcheng. Design and Fabrication of Spontaneous Liquid Transport Surface and Its Fundamental Application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 [4] 李健, 郑雯瀚, 洪芳军. 三维多孔吸液芯毛细特性孔隙尺度格子Boltzmann模拟[J]. 工程热物理学报, 2022, 43(3): 758-762LI Jian, ZHENG Wenhan, HONG Fangjun. Three-dimensional lattice Boltzmann simulation of capillary performance in a porous wick at pore scale[J]. Journal of Engineering Thermophysics, 2022, 43(3): 758-762 [5] WANG Q G, LI L, GU J P, et al. A dynamic model for the oscillatory regime of liquid rise in capillaries[J]. Chemical Engineering Science, 2019, 209: 115220 doi: 10.1016/j.ces.2019.115220 [6] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性[J]. 物理学报, 2023, 72(2): 024702LI Chunxi, MA Cheng, YE Xuemin. Thermocapillary migration of thin droplet on wettability-confined track[J]. Acta Physica Sinica, 2023, 72(2): 024702 [7] 高云天, 冉茂宇. 不同倾斜角度下毛细管浸润吸水特性实验研究[J]. 中外建筑, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049GAO Yuntian, RAN Maoyu. Experimental study on water absorption characteristics of capillary at different inclined angles[J]. Chinese and Overseas Architecture, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049 [8] BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. Philosophical Magazine, 1923, 45(267): 525-531 [9] SZEKELY J, NEUMANN A W, CHUANG Y K. The rate of capillary penetration and the applicability of the washburn equation[J]. Journal of Colloid and Interface Science, 1971, 35(2): 273-278 doi: 10.1016/0021-9797(71)90120-2 [10] LEVINE S, REED P, WATSON E J, et al. A Theory of the Rate of Rise of a Liquid in a Capillary[M]//KERKER M. Colloid and Interface Science. New York: Academic Press, 1976: 403-491 [11] QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533-538 doi: 10.1209/epl/i1997-00389-2 [12] DREYER M, DELGADO A, PATH H J. Capillary rise of liquid between parallel plates under microgravity[J]. Journal of Colloid and Interface Science, 1994, 163(1): 158-168 doi: 10.1006/jcis.1994.1092 [13] STANGE M, DREYER M E, RATH H J. Capillary driven flow in circular cylindrical tubes[J]. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913 [14] 徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702XU Shenghua, ZHOU Hongwei, WANG Caixia, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702 [15] CHEN S T, DUAN L, LI Y, et al. Capillary phenomena between plates from statics to dynamics under microgravity[J]. Microgravity Science and Technology, 2022, 34(4): 70 doi: 10.1007/s12217-022-09983-y [16] CHEN S T, CHEN Y, DUAN L, et al. Capillary rise of liquid in concentric annuli under microgravity[J]. Microgravity Science and Technology, 2022, 34(3): 30 doi: 10.1007/s12217-022-09947-2 [17] TIAN Y, JIANG Y, ZHOU J J, et al. Dynamics of taylor rising[J]. Langmuir, 2019, 35(15): 5183-5190 doi: 10.1021/acs.langmuir.9b00335 [18] DIEZ-BARROSO R, MEDINA A, VILLA A L, et al. Dynamics of the capillary rise in tilted Taylor-Hauksbee cells[J]. Revista Mexicana De Fisica, 2022, 68(6): 060601 [19] DAS S, MITRA S K. Different regimes in vertical capillary filling[J]. Physical Review E, 2013, 87(6): 063005 doi: 10.1103/PhysRevE.87.063005 [20] GAO S Q, ZHANG X Y, ZHOU Y H. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction[J]. IOP Conference Series: Materials Science and Engineering, 2018, 372: 012017 doi: 10.1088/1757-899X/372/1/012017 -
-