留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同重力环境和倾斜角度对毛细管内界面振荡行为的影响

霍晓智 王晴 顾君苹 王战涛 于强 王庆功

霍晓智, 王晴, 顾君苹, 王战涛, 于强, 王庆功. 不同重力环境和倾斜角度对毛细管内界面振荡行为的影响[J]. 空间科学学报, 2023, 43(5): 890-898. doi: 10.11728/cjss2023.05.2023-05-yg09
引用本文: 霍晓智, 王晴, 顾君苹, 王战涛, 于强, 王庆功. 不同重力环境和倾斜角度对毛细管内界面振荡行为的影响[J]. 空间科学学报, 2023, 43(5): 890-898. doi: 10.11728/cjss2023.05.2023-05-yg09
HUO Xiaozhi, WANG Qing, GU Junping, WANG Zhantao, YU Qiang, WANG Qinggong. Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 890-898 doi: 10.11728/cjss2023.05.2023-05-yg09
Citation: HUO Xiaozhi, WANG Qing, GU Junping, WANG Zhantao, YU Qiang, WANG Qinggong. Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 890-898 doi: 10.11728/cjss2023.05.2023-05-yg09

不同重力环境和倾斜角度对毛细管内界面振荡行为的影响

doi: 10.11728/cjss2023.05.2023-05-yg09 cstr: 32142.14.cjss2023.05.2023-05-yg09
基金项目: 国家自然科学基金面上项目资助(12072359)
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: V524

Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise

  • 摘要: 毛细现象与界面动态演化在航天器工程及空间流体管理中具有重要作用。在常重力条件下已发现毛细管内会产生界面振荡现象,该现象主要与毛细尺度、流体物性和壁面润湿性等因素相关。然而在空间应用过程中,毛细界面运动受到倾斜角度和重力环境变化的影响,其常规振荡行为会发生改变。针对这一问题,建立了毛细管内界面演化过程的理论模型,同时开展了数值模拟研究,获得不同重力条件及倾斜角度对毛细管内界面振荡行为的影响规律和可视化结果。研究表明,毛细管内界面振荡行为由Ohnesorge数(Oh)和Bond数(Bo)的比值决定。随着重力加速度增大,Oh/Bo变小,振荡现象加剧。毛细管倾斜后,界面振荡行为受到沿毛细管方向重力分量的影响,毛细振荡效应随倾斜角度的增加而弱化。

     

  • 图  1  倾斜毛细管内弯液面位置与结构

    Figure  1.  Schematic of meniscus when capillary tube is tilted

    图  2  压头损失计算

    Figure  2.  Schematic diagram of head pressure loss

    图  3  倾斜毛细管几何模型

    Figure  3.  Geometric model of tilted capillary tube in a liquid bath

    图  4  垂直毛细管界面振荡过程的实验结果及理论分析与数值模拟结果对比

    Figure  4.  Comparison of results of theoretical modeling, numerical simulation and experiment

    图  5  不同重力下毛细管内界面的运动情况(实线为理论结果,虚线为数值模拟结果)

    Figure  5.  Meniscus movement under different gravity levels (Solid line is for theoretical result while the dashed line is for simulation)

    图  6  HFE-7100在毛细管内界面运动的能量耗散过程

    Figure  6.  Energy dissipation during capillary oscillation for HFE-7100

    图  7  不同倾斜角度下弯液面运动情况

    Figure  7.  Meniscus movement under different tilt angles

    图  8  HFE-7100在毛细管内运动的瞬态过程

    Figure  8.  Meniscus movement of HFE-7100

    表  1  流体参数属性

    Table  1.   Properties of the fluid parameter

    工质名称密度$\rho /({\mathrm{k}\mathrm{g} }^{}\cdot {\mathrm{m} }^{-3})$黏度 $ \mu /(\mathrm{m}\mathrm{P}\mathrm{a}\cdot \mathrm{s}) $表面张力$ \sigma /(\mathrm{m}\mathrm{N}\cdot {\text{m}}^{-1}) $设置的初始
    接触角$ {\theta }_{0} $/(°)
    HFE-710015200.9313.620
    去离子水9970.897245
    乙醇7851.0821.930
    下载: 导出CSV
  • [1] 杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014

    YANG Tao, ZHAO Shilei, GAO Teng, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014
    [2] WANG C X, XU S H, SUN Z W, et al. Influence of contact angle and tube size on capillary-driven flow under microgravity[J]. AIAA Journal, 2009, 47(11): 2642-2648 doi: 10.2514/1.41899
    [3] 孙鹏程. 自输液表面设计制备及基础应用研究[D]. 南京: 南京航空航天大学, 2021

    SUN Pengcheng. Design and Fabrication of Spontaneous Liquid Transport Surface and Its Fundamental Application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021
    [4] 李健, 郑雯瀚, 洪芳军. 三维多孔吸液芯毛细特性孔隙尺度格子Boltzmann模拟[J]. 工程热物理学报, 2022, 43(3): 758-762

    LI Jian, ZHENG Wenhan, HONG Fangjun. Three-dimensional lattice Boltzmann simulation of capillary performance in a porous wick at pore scale[J]. Journal of Engineering Thermophysics, 2022, 43(3): 758-762
    [5] WANG Q G, LI L, GU J P, et al. A dynamic model for the oscillatory regime of liquid rise in capillaries[J]. Chemical Engineering Science, 2019, 209: 115220 doi: 10.1016/j.ces.2019.115220
    [6] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性[J]. 物理学报, 2023, 72(2): 024702

    LI Chunxi, MA Cheng, YE Xuemin. Thermocapillary migration of thin droplet on wettability-confined track[J]. Acta Physica Sinica, 2023, 72(2): 024702
    [7] 高云天, 冉茂宇. 不同倾斜角度下毛细管浸润吸水特性实验研究[J]. 中外建筑, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049

    GAO Yuntian, RAN Maoyu. Experimental study on water absorption characteristics of capillary at different inclined angles[J]. Chinese and Overseas Architecture, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049
    [8] BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. Philosophical Magazine, 1923, 45(267): 525-531
    [9] SZEKELY J, NEUMANN A W, CHUANG Y K. The rate of capillary penetration and the applicability of the washburn equation[J]. Journal of Colloid and Interface Science, 1971, 35(2): 273-278 doi: 10.1016/0021-9797(71)90120-2
    [10] LEVINE S, REED P, WATSON E J, et al. A Theory of the Rate of Rise of a Liquid in a Capillary[M]//KERKER M. Colloid and Interface Science. New York: Academic Press, 1976: 403-491
    [11] QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533-538 doi: 10.1209/epl/i1997-00389-2
    [12] DREYER M, DELGADO A, PATH H J. Capillary rise of liquid between parallel plates under microgravity[J]. Journal of Colloid and Interface Science, 1994, 163(1): 158-168 doi: 10.1006/jcis.1994.1092
    [13] STANGE M, DREYER M E, RATH H J. Capillary driven flow in circular cylindrical tubes[J]. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913
    [14] 徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702

    XU Shenghua, ZHOU Hongwei, WANG Caixia, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702
    [15] CHEN S T, DUAN L, LI Y, et al. Capillary phenomena between plates from statics to dynamics under microgravity[J]. Microgravity Science and Technology, 2022, 34(4): 70 doi: 10.1007/s12217-022-09983-y
    [16] CHEN S T, CHEN Y, DUAN L, et al. Capillary rise of liquid in concentric annuli under microgravity[J]. Microgravity Science and Technology, 2022, 34(3): 30 doi: 10.1007/s12217-022-09947-2
    [17] TIAN Y, JIANG Y, ZHOU J J, et al. Dynamics of taylor rising[J]. Langmuir, 2019, 35(15): 5183-5190 doi: 10.1021/acs.langmuir.9b00335
    [18] DIEZ-BARROSO R, MEDINA A, VILLA A L, et al. Dynamics of the capillary rise in tilted Taylor-Hauksbee cells[J]. Revista Mexicana De Fisica, 2022, 68(6): 060601
    [19] DAS S, MITRA S K. Different regimes in vertical capillary filling[J]. Physical Review E, 2013, 87(6): 063005 doi: 10.1103/PhysRevE.87.063005
    [20] GAO S Q, ZHANG X Y, ZHOU Y H. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction[J]. IOP Conference Series: Materials Science and Engineering, 2018, 372: 012017 doi: 10.1088/1757-899X/372/1/012017
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  111
  • PDF下载量:  53
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-09-01
  • 网络出版日期:  2023-10-08

目录

    /

    返回文章
    返回